Intel® Fortran Compiler for Linux* Systems
User's Guide
Volume I: Building Applications

Copyright © 2003-2004 Intel Corporation
Portions © Copyright 2001 Hewlett-Packard Development Company, L.P.

Document Number: 253259-001

Disclaimer and Legal Information

Information in this document is provided in connection with Intel® products. No
license, express or implied, by estoppel or otherwise, to any intellectual property
rights is granted by this document. EXCEPT AS PROVIDED IN INTEL'S TERMS
AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO
LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR
IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL
PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO
FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR
INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL
PROPERTY RIGHT. Intel products are not intended for use in medical, life
saving, or life sustaining applications.

This Intel® Fortran Compiler for Linux* Systems User's Guide Volume I Building
Applications as well as the software described in it is furnished under license
and may only be used or copied in accordance with the terms of the license. The
information in this manual is furnished for informational use only, is subject to
change without notice, and should not be construed as a commitment by Intel
Corporation. Intel Corporation assumes no responsibility or liability for any errors
or inaccuracies that may appear in this document or any software that may be
provided in association with this document.

Designers must not rely on the absence or characteristics of any features or
instructions marked "reserved" or "undefined." Intel reserves these for future
definition and shall have no responsibility whatsoever for conflicts or
incompatibilities arising from future changes to them.

The Intel Fortran Compiler product may contain software defects which may
cause the product to deviate from published specifications. Current characterized
software defects are available on request.

Intel SpeedStep, Intel Thread Checker, Celeron, Dialogic, 1386, i486, iCOMP,
Intel, Intel logo, Intel386, Intel486, Intel740, IntelDX2, IntelDX4, IntelSX2, Intel
Inside, Intel Inside logo, Intel NetBurst, Intel NetStructure, Intel Xeon, Intel
XScale, Itanium, MMX, MMX logo, Pentium, Pentium Il Xeon, Pentium Ill Xeon,
Pentium M, and VTune are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States and other countries.

* Other names and brands may be claimed as the property of others.

Copyright © Intel Corporation 2003-2004.
Portions © Copyright 2001 Hewlett-Packard Development Company, L.P.

Table Of Contents

About the Intel® Fortran ComMPIlercoiiii i 1
HOW t0 USE ThiS DOCUMENT ...t e e e e e eeeenees 1

Additional DOCUMENTALIONccoeiiiiiiiiiiiee et e e e e eeeeeene 1

N\ [o]e= Ui ToT o I OXo] 1Y =T o1 10 1S3 2

GettiNg STAME ... 3
Getting Start€d OVEIVIEWuuuuiiiie e ee e et e e e e et e e e e e e e e ee e e e eeeeaees 3
How You Can Use the Intel® Fortran Compilercccoevvvieiiiiciiieie e, 3
(@] ga] o] F=1 10 g I =d o F= TS U 4
PreproCeSS PRASE........oooviiiiiii et e e e e e e 5
ASSEMDBIErS @Nd LINKET ...ccoeiiiiiie e 6

ASSEMDIETS ... 6

] TR 7
Default Behavior of the Intel Fortran Compiler..........ccccevviivviiiiiiiiee e, 7
Input Files and Filename EXIENSIONSiiiiiieiiiiieiiiiieie e e e e e e e e eeeaannnes 7
File SPECIfICAtIONSoeeiiiiie e e e e e e e e eaaaaaas 8
L@ 11 10T 1 A 1= OSSR 9
Temporary Files Created by the Compiler or Linkerccccoooviiiiiiiiieiiiiineeens 10

BUilding APPHCALIONSuuiiiiie et e e eeeeees 10
Building Applications OVEIVIEWccuiiiiiiiiiiiiii 10
Controlling the Compilation ProCESSccuvvviiiiiiiiiiiiiiiii e 11
Setting and Viewing Environment Variablesccccvvvviiiiii e 11

Table Of Contents

Configuration File Environment Variablesccccvviiiiiiiii 12
Running the Shell Script to Set Up the Environment Variables........................... 12
Invoking the Intel Fortran Compiler............coiieii i i 13

Using the ifort CoOmMmMAaNd..........oooiiiiiiiiii et eeeaeeees 13

Using the make Command...........oouuiiiiiiiii e 14
Examples of the ifort Command...............cciiii 14

Compiling and Linking Multiple Filescccooiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeee 14

Preventing LINKING et e e e e e e e e e e e e e e e e e e eeeannnes 14

Compiling Fortran 95/90 and C Source Filescooovviiiiiiiicciiieeee e 15

Renaming the OULPUL FIlecooeiiiiiiiie e e 15

Specifying an Additional Linker Librarycccccceiiiiiiiiii e 15
Using Module (.mod) FlES ... 16

Compiling Programs with ModUIESouuuiiiiiiiiii e 16

Working with Multi-Directory Module Files............ccccooiiiiiiiiiie 17

Parallel Invocation with a makefile ... 18
Searching for Include and .mod Files..............uiiiiiiiiiiiie e 19

Specifying and Removing an Include File Path...............cccoooooiiieen e, 19
Configuration Files and ResSponse FileSuiiiiiieiiiiiiieiee e 20

Configuration FlEScooo oo 20

Example Configuration File...........ccoooiiiiiiiiiiiiii e 21

RESPONSE FIlES.....uuiiiiiiiiiiiiiiiit ettt e e e e eeee e e 21
Specifying Alternative Tool Locations and OptioNS.............eeceiiiieeeevveeeeiveiiinnenn. 22

Using -Qlocation to Specify an Alternative Location for a Tool........................ 22

Table Of Contents

Using -Qoption to Pass OptioNS t0 TOOISuuveiiiiieieiieiieeiiiiiee e 22
Predefined PreproCcessor SYMDOIS........ciii i 23
Defining Preprocessor SYMDOIScoiiii i 24
Suppressing Preprocessor SYMbOISoiviiiiiiiiiiiiii e 25
Redirecting Command-Line Output t0 FileSuuuiiiiiiiiiiiiiii e 25
Creating, Running, and Debugging an Executable Programcccccevvvvvnnnnn. 25
Commands to Create a Sample Programccccooooiiiiiniiiiiiiiiiieeees 26
Running the Sample Programccccoooieoiiiiiieiiicss e eeeaeeaaeanns 27
Debugging the Sample Programccccooooiiiiieiiiiiiiie e e e e e e 28
Creating Shared LIBrari€soooeeiiiiiiii e 28
Creating a Shared Library with a Single ifort Command................cccccceeeeeeeee. 28
Creating a Shared Library with ifort and Id Commands................ccoiiieerennnnn. 29
Shared Library ReStIICHONSovi i 29
Installing Shared Libraries.........cccoooo 30
Allocating Common BIOCKSoooiiiiiii s 30
Guidelines for Using the -dyncom OptioN..........cccovvvviiiiiiiiiee e 31
Why Use a Dynamic Common BIOCK?...........ccooiviiiiiiiiiiii e 31
Allocating Memory to Dynamic Common BIOCKScccovviiiiiiiiiiiiiieeeeeeeeens 32
(@70 g0 o1] (=T g @] o] i o] o IS F U 32
Compiler OPtIoNS OVEIVIEWccouuiiiiiiieeeeee ettt e e e e e e eeesaenna s 32
Compiler OptioNS DELAIISccvvviiiiiiiiiiiiiiii 33
Styles of CompPiler OPLIONScooiiiieeeee e 33
Using Multiple ifort Commands............cooeiiieiiiiiiiice e e e e 33

Table Of Contents

Using the OPTIONS Statement to Override Options............cccceeeveeeevveeeeiivnnnnnn. 34
Getting Help 0N OPLIONSvuiiiiiee e e 34
Compiler Directives Related to OPLiONSocoviiiiiiiiiieeeceeeeeee e, 34
Code Generation OPLIONScooiiiiiiiiiiie et e e e e e e s 35
Descriptions of Code Generation OPtioNSuuuiiiiiieeiiieeiiiiiiaee e eeeeeeaieens 35
S[NOJIECUISIVE ..o 35
-[noJreentrancy [KEYWOIrd] ... 35
-SOX[-] (IA-32 SYStEMS ONIY) ..uviiieeieeeeee e e e e 36
CompatibDility OPLIONSueiiiii e e e e e e e e e e e e aaan s 36
Descriptions of Compatibility OptionS..........ooevviiiiiiiiiieeeeeeeeceee e, 36
! PSPPI 36
—ASSUME [NOJDSCC.. ..o 37
(S 1 1V PP 37
SNOJFTTI e 37
-fpscomp all and -fPSCOMP NONE.......coeviiiiiiii 38
-fpscomp [NOJfIleSTromMCMAd..........coovriieie e 38
-fPSCOMP [NOJGENETAL ... e 38
-fpscomp [NOJIOFOIrMALeeeiii i e 38
-fPSCOMP [NOJIIDS.... 38
-fPSCOMP [NOJIOGICAIS ... 39
010 N (0] 1 0= LA 7O 39
L5 PP 39
Compilation DiagnNOStiCS OPLIONSuuuuiiii e e et e e e e s 40

Table Of Contents

Descriptions of Compilation Diagnostics OptioNnS............ccevvviieeiieeeeeeeeeeiiiinnnnn. 41
mBO0 OF ~B95 .. 41

o [T0) (=1 1 o S 1T 11 0 o OSSP 41
-0PeNMP_IEPOI{O|L|2} ..coeeeieiee e 41
-par_repPOort{O]L[2|3}...ccoeeeeeiiee e 41
o) [0 Y (0 LS [0 T (0 [1 42
-vec_report{0]1|2]|3]4[5} (IA-32 SyStems ONly)cooeereeeiiiiiiiiii, 42
-warn all or -Warn NONE OF ~NOWAIMc.uuriirieieeeee e e e e e e ee s 43
-Warn [NOJaligNMENLSoceviieiiie e e e e e e 43
-warn [NOJAeCIarationscccooeeeiiiiiiiiic e 43
VL= U I 1010][] g 0] £ OSSP 43
V= g eI 0 10] (o [T 0 L] = | PP 43
-Warn [NOJIGNOIE_IOC ...coeeiiiiiiiii e 44
SWAIN [NO]STUBITOIS. ..o 44
-warn [NOJtruUNCAatEd_SOUICEcccvviiiiiiiiiiii 44
-Warn [NOJUNCAIIEAoeviiii e e e e e 44
SWAIN [NOJUNUSEA e e e e e e e e e e e e eaees 45
VL= U 110] [V 1ST= T = OSSP 45
D= 1= W @ 1[0 o < TS RUPPPPPPUPPPIN 45
Descriptions of Data OPtiONS..........uuuuuiiiiieeeiieeiiiiieer e e eeeeaenens 45
S[NOJAIIGN e 45
SAlIGN NONE ..o 45
-align [noJcommons or -align [N0]dCOMMONScceveeeieiiiiiiiiiiceee e, 46

Table Of Contents

—AligN FECNDYLE ... 46
~align [NO]JrECOIASo e e a7
~aligN [NOJSEQUENCE ... e e e e e e e e a7
-asSSUME [NOJDYLEIECI ..o 47
-assume [NO]dUumMmMY_AllaSESccoviiiiiiiiiii et 47
-assSuUMe [NO]ProteCt_CONSLANTS........cccvviiiiiiiiiiiiiiiiee e 48
-auto_scalar, -auto, and -SAVEccoeeviiiiiii e 48
-double_Size {B4]128}ooureii i 49
-dyncom "BIKL,BIK2, ... " oo 49
-integer_SiZe {16]|32|64}uuiii i 50
10 [PPSR 50
-real_SiZe {32|64|128} ... 50

B T= (=R o - |V o1 USSP 51
SZETO[-] teteeee et 52
External Procedures OPLIONSccoviiiiiiiiiiiiiiii 52
Descriptions of External Procedures OptioNS...........ccevvvvvvvviiiiiiieeeeeeeeeeeiiiinnnnn 52
~ASSUME [NOJUNUEISCOIEvvuiii e eeeeeeeeeie e e e e e e e e e e e e e aees 52
-[NOIMIXEA_SII IEN_AIQ ..ccvveeiiiee e 52
“NAMES KEYWOIT ...ttt e e e e e e e e e 53
Floating-PoINt OPLIONSuveeiiiiie e e e e e e eeeeeenes 53
Descriptions of Floating-Point OPLiONSeeiviiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeee 53
—ASSUME [NOJMINUSO ...oeiiiiiiiiiiiiiieeeeeeee e 53
=[NO]fItCONSISIENCY ... e e e e e 54

Vi

Table Of Contents

-fp_port (IA-32 SYStEMS ONIY)cceeiiieeeee e 54
=[NOJFPCONSLANT ... e 55
DN e 55
-fpstkchk (IA-32 SYStemMS ONIY)coooiiiiiiiiie e 56
-fr32 (Itanium®-based SYStEMS ONIY)uuiiiiiiiiiiiieee e 56
174 [RRRSPTRRR 56
-IPF_flt_eval_methodO (Itanium®-based systems only)cccceeeeeen. 56
-IPF_fltacc[-] (Itanium®-based systems only)ccccoeveeeeeeiiriiiiiiiiiiiieeeeee, 57
-IPF_fmal[-] (Itanium®-based systems only)cceeiiiiieeeiiiieeiiiciee e 57
-IPF_fp_speculationmode (Itanium®-based systems only)..........cccceeeeeeenen. 57
1 110 PRSPPI 57
-pc{32]|64|80} (IA-32 SYSIEMS ONIY) ..evvriiiiieeiiiiiiiiii e 58
LaNQUAQJE OPLIONS.coeieeiiiiiiiee e e e e ettt r e e e e e e e e eeatb s e e e e e e eeeeeassan e e e e eeaaaeeesnees 58
Descriptions of Language OPLIONSuuuururruumiuiiiiiiiirrrrrennrnernrreeenreereee.. 58
S[NOJAIPAIAIM ...t 58
S[NOJA_IINES e ——————————— 58
-[NO]eXtENA_SOUICE [SIZE]..uuuuieiieeeeeiieecee et e e 59
S[NOJIBB ... 59
-[NO]free Or -[NOJfIXEA ...cceeeiiiiee e 59
-0peNMP Or -OPENMP_STUDS......ooiiiiiiiie e 60
S[NO]PAA_SOUICEcoiiiiiiiiiieei 60
LIDraries OPLIONS.......covviiiiiiiiiiieeeee e 60
Descriptions of LibrariesS OPtioNS.........coieiieeiiieieiiiiiis et e e e e eeeaaannns 60

vii

Table Of Contents

e 1[0 T o] 0] o] o PP UPPUPPTRPIN 60
“NOAETAUILIDS ... 61
0 7/ = 1 2L oSS 61
LA 61
S[NOJENIEAUS. ... 61
SNOSTAND i 61
SSNATEA .. 61
=ShAred-lDCXA ... 62
STALIC-TIDCX@. ..o 62
SSTALIC .ttt e e e e r e e e e e 62
MiSCEllaN@OUS OPLIONS.......uuiiiiei et e e e e e e e e e e e e e e e eeaannes 62
SANST_AHAS]-] ceveeiniee e 62
—ASSUME CC_OMP . etiiieiieeeete e et e et e e et e e et e e e e e eaa e e eaa e e esn e e eaneeesnnaeennnaanes 63
SASSUIME NMONE ...eeiti et e et e e et e e e e e e e e e e e e nn e e e ennnaas 63
s 10] o175 | 1| P 63
-CCdefault KEBYWOIduueiiee e e e e e e e e 64
[(1 o USRS 64
-dynamic-lNKErfile..........ooemie e 64
STPIC OF -TPIC e 64
-fvisibility=keyword and -fvisibility-keyword=filecccccrrriiiiiiinnnnnn. 64
(S PP 65
SNEIP . 65
-inline_debug_iNfOcooiieee e 65

viii

Table Of Contents

170 Lo o o S 65
s T0] 0] g 42T V1 o 1SR 66
SNOINCIUAE .. 66
S[NOJPAA ... 66
-prec_div (IA-32 Systems ONIY)ooeiiiiiiiiie e 66
-rcd (IA-32 SySteEmMS ONIY) .ooviiiiiiiiii 67
-size_|p64 (Itanium®-based Systems only)cooovvvviiiiiiiiii, 67
-[NO]SLACK _tEMPS ... 67
SNOSTAITTIIES .o 67
YY1 = Qo] 0 V25 67
ST Il 67
e 1 1 TSRS 68
LU LT UPPP PPN 68
VTP UPPRRUPPTRPIN 68
Y PP PPT PPN 68
SWRIL ... a e 68
e VATd o] o1 o] 1t N e 11 o] o 2 S 68
0 ST PUPPPPT 69
SXHNKEN VAIUE ..o 69
OPtMIZAtION OPLIONS... .ottt e e e e e e eeeeaan s 69
Descriptions of Optimization OPLIONSuuuuuuruururireiirirerrerreererreeerrreree. 69
-assume [NO]JbUfEred 0 ... 69
-auto_ilp32 (Itanium-based systems only)oooevveiiiiiieieieeeeecee e, 70

Table Of Contents

-axX{K|W|N|B|P} (IA-32 SYStemMS ONIY)uiiiieeeiiiiieiiicie e 70
-compleX_limited _range[-] .. coeeee e 71
SNO-JAlIAS .o ————————————— 71
SHNO-JTNAIAS .. 71
TS e 71
-fnsplit[-] (Itanium®-based SysStems ONly).........cccccvviiiiiii 72
TP (IA-32 SYyStEMS ONIY) ..o 72
L8| PP PPP PPN 72
| o PP PPP PPN 73
SIP_ N0 _ININING. .. e 73
-ip_no_pinlining (IA-32 SYStEMS ONIY) ...uvuiiiiiieieeeeecce e 73
] 810 PP PP PPUPPPPIN 73
] SO PP UPPTTUPPPPIN 73
SPO_0D] i 74
PO S e 74
-ivdep_parallel (Itanium®-based systems only)cccceeveeeeiiiiiiiiiiciiineeeeen, 74
SN0 _INIINE..ceee e e 74
L O TP UPPPPT 74
(0] 01 S (=] 00] o S PP 75
-opt_report_file file ... 76
—OPE_IEPOM_NEIP oo 76
-opt_report_level {minimed|max} ... 76
-0Pt_report_Phase PhaSE.....cci i i i e 76

Table Of Contents

-0pt_report_routing [FOULINE]ccovveeeiiiieie et e e 76
spar_thresShold N......cooo e 77
SPATAUIEL ... e 77
-prefetch[-] (IA-32 SysStems ONIY).......uueeiiiir i 77
e o]0 o [T 0 || ST PSSRPP 78
SPrOf_file FIlE o 78
SPFOT QBN i 78
o] (0) N L= O 78
-scalar_rep[-] (IA-32 SYStEMS ONIY) ...vuuuiiiie e 79
100 TSP UPPIPN 79
01 1o 1] OSSP 79
-X{K|WI|N|B|P} (IA-32 SYStEMS ONIY) ..evvrriiiiiiieieiiiieeiiie e 79
OULPUL FIlES OPLIONS ...t e e e e e na s 80
Descriptions of Output Files OPtioNSuuuuuiiiiiiiiiiiiiiiiiiiiiiiierereeereeeeneeeeee. 80
(ST PP 80
SFCOAE-ASIM .. 80
SFSOUICE-BSM ... 81
-f[NOJVEIDOSE-ASMo 81
“MOAUIE PN 81
SOfIIENAME .. 81
B 115 7= 1| o [O 81
-Qlocation,tO0l,PAtN.......ceeeee e 81
@ To] 0110 18 (oT0] o] o] 1 o] o 1S O 82

Xi

Table Of Contents

et 2 PR 82

LU ST = LS 1 [OPPUPPTPN 82
PreproCeSSOr OPLIONSvuuiiiiie e e ee et e e e e e e et e e e e e e e e e e eaaaa e e e e eeaaeeennnnes 82
Descriptions of Preprocessor OPtiONSccovuuiuiiiiiinieeeeeeeeeiiiiiee e e eeeeeeeeens 82
-assume [NO]SoUrce_INCIUAEoooiiiiiiiii e 82
-DNAME[=VAIUL] .o 83
NOJI P e 83

e (6 PP TP PPPPPPPPRRPPP 83
SPrEPIrOCESS_ONIY ... e e e e e 84

SU NAMIE . 84

VAT o oT o 1T o 1 [X'e] o] £ o] 22 OSSR 84
RUN-TIME OPLIONS ...ttt e e e e e e e b e e e e e e e e eeeeenenes 85
Descriptions of RUN-TIME OPLIONS.......iiiiiiiiiiiiiiiiiiiie et eeeaeenens 85
-[no]check [all] or -[no]check [NONE]covviiiiiiiiiiii 85
-check [noJarg_temp_Createdcccvvviiiiiiiiiiii 85
-CheCK [NOJDOUNGS ... e e e e 85
-CheCK [NOJfOrMALcooieeeee e e 86
-check [NOJOULPUL_CONVEISIONcciiiiiiiciie e 86
S[NOrACEDACKo 86
Debugging USING 1dDiie s 87
Debugging UsiNg idb OVEIVIEW...........ccooviiiiiiiii 87
Getting Started with DebUgQINGuuuuuuiiiiiiiiiiiiiiiiiiiiiii e 87
(D=1 o]0 o T [T o T @] o] 1 o] o 1< USRS 88

Xii

Table Of Contents

Preparing Your Program for Debugging........cccovvuuiiiiiiiiiieeiieeeeces e 88
Using Debugger Commands and Setting Breakpoints...........ccccoeeeieeeiiiieeiiinnnnnnn. 89
Other Debugger COMMAaNAScoooeeiiiiiieei e e e e 90
Summary of Debugger CommaNdS...........ooouuuiiiiiiiei e 91
Debugging the SQUARES Example Programcccccceeviiiiiiiiiinneeeeeeeeeeiiiinnn 93
Displaying Variables in the Debugger ..., 98
MoOdUle VariabIlEs............uuuiiiiiiiiiiiiiiiiiiiii bbb 98
Common BIOCK Variables ... 98
Derived-Type Variables..........ooouuiieiiiii e 99
Record Variables............oo i 100
POINtEr VariabIeSeeiiiiiieiii s 100
Fortran 95/90 POINTEIS 100
INtEGET POINTEIS ..ot e e e e e e eeaaeees 101
Array VariabIes..........ooo 102
ATTAY SECHIONSuuiiiiiiiiiiiiitteiietebbbbbbbbbe bbb bbbt ee s esseseseses e s e e e sseseeeeeeeeeees 102
ASSIGNMENT L0 AITAYS. ... i i i e e eeeeeeeetiia et e e e e e et e e e e e e e e eeassra e e e e eeeaeeennnnes 103
ComPIeX VariabIEScooi e 103
DAL Ty P S ittt 104
Expressions in Debugger ComMmandS..........oooiiiiiiiiiiiiinieee et eeeenieens 104
FOrtran OPEIALOrS.......uueeeeiiie et e e e e e eea s 105
PrOCEAUIES ...ttt ettt ettt e e e et e e e e e e eeeeeeeeeeeeees 105
Debugging Mixed-Language Programscccccccuiiiiiiiiiiieee 105
Debugging a Program that Generates a Signalccceovvviveiiiiiiiiie e, 106

Table Of Contents

Locating Unaligned Data.............cccvveeuuiiiiiiiiieeeeeeeeiiiiis e e e e e e eeeaian e e e e e e e neeannnnns 107
Data @nd /O ... 108
Data RepresSentation..........ccoovviviiiiiiiie e e e e e e e e eeaaannns 108
Data Representation OVEIVIEWuuuuiiiiieeeiieeeiiiiiiaa e e e e e eeeeeiainaaaaeeeeeeeeeseen 108
INEANSIC DALA TYPES ..ttt e e e e e e e e 108
Integer Data Representations OVEIVIEWcoovviiiiiiiiieieeeeeeeee e 110
INTEGER(KIND=1) RePresentation............ccoouueiiiiiiiiiieieeeeeeeee e 111
INTEGER(KIND=2) Representation...........ccccceeeeeriieeeuiiiiineeeeeeeeeeeesiinnneaeeeeeees 111
INTEGER(KIND=4) Representation...........ccccueeeeerieeeeuiiiiisieeeeeeeeeeesinnnneneeeeeees 111
INTEGER(KIND=8) Representation.............ccccceeeevieeuiiiiiiii e e eeeeeeeeeen e 112
Logical Data RepreSentationsS............uuuuiiiiii i e e e e e e e e eeeaens 112
Native IEEE* Floating-Point Representations OVerviewcccccovveeeeeeeeeenns 113
REAL(KIND=4) (REAL) Representation................uuueiiiieeeeiieeeiiiiiiinnee e e e eeeeeiennns 114
REAL(KIND=8) (DOUBLE PRECISION) Representation..............ccccccevvverennenn. 115
REAL(KIND=16) (EXTENDED PRECISION) Representation.......................... 115
COMPLEX(KIND=4) (COMPLEX) Representationcccceeeeeeeeeeereeernnnnnnnnn 116
COMPLEX(KIND=8) (DOUBLE COMPLEX) Representation................cc.cocv.... 116
COMPLEX(KIND=16) Representationcceeeeieieeeeeseeeiiiiise e e e eeeeeeeennnnns 117
File fordef.for and ItS USAge........cooiiiiiiiiiiiiie et e e 117
Character RepreSentation............oouuuiiuiiiiieeeeeeceeiiiee e e e e e eeeeneens 120
Hollerith Representation ... 120
Converting Unformatted Datacooooeeeiiiiiieeeeee s 121
Converting Unformatted Data OVEIVIEWcouvvuiiiiiiieeiiieeeiiiiiie e e eeeeeeeennnnnns 121

Xiv

Table Of Contents

Supported Native and Nonnative Numeric FOrmats...........ccoeeeeevvveeiivvininineeenn. 122
Limitations of NUMErC CONVEISIONuviiiiiieeaiiiiiiiiiie e 125
Methods of Specifying the Data Format: OVErview..............c.cuvveeeiiieeeeeeveennnnns 126
Environment Variable FORT_CONVERTN Method.............oooiiiiiiiiiiiiiiiiiiis 127
Environment Variable FORT_CONVERT.ext or FORT_CONVERT _ext Method
.. 128
Environment Variable F_UFMTENDIAN Methodccoooiiiiiiiiiiniiecceeiiies 129
Little-to-Big Endian Conversion Environment Variable.................ccccccvvvnnnnnn. 129
1o =T 130
Another Possible Environment Variable Settingccccccvvvvviiiiiiiininnnnee. 130
USAQgE EXAMPIES ...t e e e e e e e e e e e e e eaaraa 131
OPEN Statement CONVERT Methodcoooiiiiiiiiiiiiieieeeeee e 132
OPTIONS Statement Methodooviiiiiiiiiice e 133
Compiler Option -convert Methodccoooooiiiiiiiiiiiie e, 134
Porting NONNALIVE DAta.........ciiiieiiiiiiiiiiiiie et eeeeeeeeens 134
FOIran 1/O ...t 135
FOrtran 1/O OVEIVIEW.........cooiiiiiiiiie 135
LOGICAI 1/O UNILS.... et e ettt e e e e e e e e e e eaaaae e e e e eeeaeeennnnes 136
Types Of 1/O State€MENTSuvueiii e e e e e e e e 137
FOrms of 1/O StatemMENtS..........uuiiiiiieiiiii e 138
Files and File CharacteristiCS OVEIVIEWccoiiiiuiiiiiiieeeeeiiiiiiiee e 140
File Organization............oouuiiiiiiie et a e e eeeaeees 140
Sequential OrganiZatioNooee oo 141
Relative OrganiZationeeeueeeueeieiieeeeieeieeeeeeeeesseeeeeeeseseseeesseeseeseeeeeeeeeees 141

Table Of Contents

Internal Files and ScratCh Files...........ccciiiiii e 141
INEINAI FIlES ... e e 142
SCIAICN IS, 142

YT o0 (o B 1Y/ o 12T USRPPPPPPRPRPN 143
Fixed-Length RECOI TYPEccooiiiiiiiiiiie et eeeeeaeeees 143
Variable-Length RECOId TYPE......ovvviiiiiiiiiiiiiiiiiiiiie 143
Segmented RECOI TYPE ..o 143
Stream RECOI TYPE ...ttt e e e e e e e e e e e e e e e aeana s 144
Stream_LF and Stream_CR ReCOId TYPE ...uiieiieeeiiieeiiiiiiiie e e 144
ChooSINg @ RECOI TYPE....ciieeiiiiiee e e e 144

ReCOrd OVEIN@AM..........coiiiiiiiieiie e 145

RECOIA LENGLN ..ot e e e e e e eeenees 145

Accessing and AsSIgNING FIlES ..o 146
Assigning Files to Logical UNItS...........couvvviiiiiiiie 146

UsiNg Default ValUES ... 146
Supplying a File Name in an OPEN Statement...........ccccooeeeevvvvviiviiiinennnn. 147
Using Environment Variables. ... 147
Implied Intel Fortran Logical Unit NUMDEISouviiiiieiiiiiiecee e, 147

Default Pathnames and File Names ... 148
Examples of Applying Default Pathnames and File Namesc........... 149
Rules for Applying Default Pathnames and File Names...............cccceevvvvvnnnnn. 149

Using Preconnected Standard I/O FileS..........ccooiii, 150

Opening Files: OPEN StatemMeNntccovviviiiiiiiee e e e e e e e 150

XVi

Table Of Contents

OPEN Statement SPECITIEISuuiii i 151
Specifiers for File and Unit Information.............ccccoovvviiiiii e 151
Specifiers for File and Record CharacteristiCs...........ccoceeviveeeeiiiiiiiiiiinennn. 151
Specifier for Special File Open ROULINEccoooviiiiiiiiiiiee e 152
Specifiers for File Access, Processing, and PosSitionccccevvvvicinennn. 152
Specifiers for Record Transfer CharacteristiCsccccevvveeeeiieeeiiiiniinnennn. 152
Specifiers for Error-Handling Capabilitiescccco 152
Specifier for File CloSe ACHION...........ocevviiiiiie e 152

Coding File Locations in an OPEN Statement...............cceeeieiiiieeveeeeviiiienenn. 153

Obtaining File Information: INQUIRE Statement..............ccccceeiiieeeiiiieeiiiiiieennn. 153

INQUINY DY UNIt ..o e e e e e e 153

INQUIrY DY File NAME ..o 154

INquiry by OUEPUL IEEM LIST ... 155

Closing a File: CLOSE Statement..........ccovviiiiiiiiiiiiiiiiieeeeeeeeee e 155
Record Operations OVEIVIEWccuuiiiiiiiiiiiiiee e 156
Record 1/0O Statement SPECITIErS.......uuuuuiiie e e e e e 156
RECOI ACCESS ...ttt e e r e e e e e e e annnee s 157

SEQUENTIAI ACCESS ...uuiiii e et e e e e e e e e e e e ea s 157

DIFECE AACCESS ...ttt ettt e e s e st e s e e e e e e e e ee e 158

Limitations of Record Access by File Organization and Record Type........... 158

File SNAING.....cooooiiii 159
Specifying the Initial Record POSItiON..............uuuuiiiiiiiiiiiiiiiiiiiiiiieiiieiieeeeeeeeeeeeee 159
Advancing and Nonadvancing Record I/Ocoovvviiiiiiiii e 160

Table Of Contents

RECOI TIANSTEI ...t e 161
INPUt RECOId TranSTervvviiiee e 161
Output Record Transfer.... ... e 162

User-Supplied OPEN Procedures: USEROPEN Specifier........ccccooeeeiviiiiinnnnnn, 163
Syntax and Behavior of the USEROPEN Specifiercccooevveiiiiiiiiiinnnnenn. 163
Restrictions of Called USEROPEN FUNCHONS...........uuvuiiiiiiiiiiiiiiiiiiiiiiiieeneee. 165
Example USEROPEN Program and FUNCHONcovviiiiiiiiiiiiiiiieeieeeeeeeee 165

Compiling and Linking the C and Intel Fortran Programscccveenn. 165
Source Code for the C Function and Header File..............ccccooviiiiinnnnennn, 165
Source Code for the Calling Intel Fortran Program..............coeeevvvvvviivnnnnnn. 168

Format Of RECOI TYPES ..vuuuiiieeeiiiiieeie e ettt e e e e e e e e e e e e e e e eeenanans 169
FiXed-Length RECOIUSiiiiiiiiiiieiiiie et eeeeaeeee 169
Variable-Length RECOIS.coii i 169

Variable-Length Records Less Than 2 Gigabytesccccccuvieiiiiiinnnnnns 170
Variable-Length Records Greater Than 2 Gigabytes...........ccccceeeiiiiinninnns 170
Segmented RECOIIS........coovveiiiie e e e e e s 171
SHEAM FlE ... 172
Stream_CR and Stream_LF RECOIdS............coeeviiiiiiiiiiiiie e 172

Microsoft* Fortran PowerStation Compatible Files.............cccovviiiiiiiiinieeees 173
Formatted Sequential Filesoouiiiiiiiiiiiii e 173
Formatted DIr€Ct FIlESuueiiiiiiiiiiiiiiiieiiieie ettt eeeeees 174
Unformatted Sequential FileSuuuiiiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeee e 175
Unformatted DIir€Ct FileS.........cooiiiiiiiiiiieeceee e 176

Xvili

Table Of Contents

Programming with Mixed LanguUagesceuuuuvriiiiieeeeeeeeeeiiiiis e e e e e e eeeeenennns 177
Programming with Mixed Languages OVEIVIEWccoevvvevviviiiiieieeeeeeeeeeinnnnns 177
Calling Subprograms from the Main Program..............ccccoevvveiiiiiiiieieeeee e, 178

Calls from the Main Program.........cooooee it 178

Calls to the SUDProgram ... 179
Summary of Mixed-Language ISSUES.............uuuuuuuiuimmmiiiiiiiiiiiiiiriiiiereeereeeeeeeeeee 179

Adjusting Calling Conventions in Mixed-Language Programming 180
Adjusting Calling Conventions in Mixed-Language Programming Overview.....181
ATTRIBUTES Properties and Calling Conventions..............cccovvvvvvvviiinieeeeeeeen, 182

Adjusting Naming Conventions in Mixed-Language Programming............ 185

Adjusting Naming Conventions in Mixed-Language Programming Overview ...185

C/C++ Naming CONVENTIONScoveiiiiiiiiiie e eeeeeeeitiia e e e e ee e e e e e e e eeeeneeens 186
Procedure Names in Fortran, C, and CH+ ... 187
Reconciling the Case of NamMEeS..........ccoiiiii 187
Fortran Module Names and ATTRIBUTES ..., 188
Prototyping a Procedure iN FOrtrancoooeevivieeiiiiiii e e e e e eeeenneens 189

Exchanging and Accessing Data in Mixed-Language Programming 190

Exchanging and Accessing Data in Mixed-Language Programming Overview.190

Passing Arguments in Mixed-Language Programmingueeeeinieeeeeeeeeennns 191
Using Common External Data in Mixed-Language Programming..................... 193
Using Global Variables in Mixed-Language Programmingcccceveveeeeee. 193
Using Fortran Common Blocks and C StruCtures...........ooeevvvvciiieeeeeeeeeeennnnnns 194
Accessing Common Blocks and C Structures Directly.........ccccoeeeeeevvvennnne. 195

XiX

Table Of Contents

Passing the Address of a Common BIOCK............ccccovvvveiiiiiiiiieeeeeeeeeeiiiiees 196
Handling Data Types in Mixed-Language Programmingccccccvvveen.. 197
Handling Data Types in Mixed-Language Programming Overview................... 197
Handling Numeric, Complex, and Logical Data TYpes........ccccccceeiiiieeeeiieeeeinnnnns 198
Returning Complex Type Datacoiiiieiiiiiiiiiiiiie e eeeeeees 199
Handling Fortran Array Pointers and Allocatable Arrays.........ccccooevvieeeiiieeiinnnnns 200
Handling INnteger POINEIScooviiiiiiiii 201
Passing INteger POINTEIScoovieeiiiiiee e e e e e e e e e eeeannnn 201
RECEIVING POINTEIS ...viiiiiiii ettt e e e e e e e e e e e e e aeeennnnn 202
Handling Arrays and Fortran Array DeSCIPIOrScooeeeeeeeriiiiiiiiiiee e eeeeeeeeeiiinens 203
Intel Fortran Array Descriptor FOrmat...........ccoovvvviviiiiiiie e 205
Handling Character StriNgScooiiiiiiiiiie e eeeeeeeeens 207
Returning Character Data TYPES.......uiiii ittt eeeeeeeens 210
Handling User-Defined TYPESoooiiiiiiiiiiiiee e, 211
Intel Fortran/C Mixed-Language Programs..................eeeeeveeeeemimemmeeeneneennn.. 211
Intel Fortran/C Mixed-Language Programs OVErVIEWcccovvvvvvvieiiieeeeeneennn. 212
Compiling and Linking Intel Fortran/C Programscooevvvviiiiiieeeeeeeeeeeeinnnnns 212
Using Modules in Fortran/C Mixed-Language Programmingcccccevvveenns 212
Calling C Procedures from an Intel Fortran Program.............cccceeeviiiiiiiieneiinnnnns 214
NaMING CONVENTIONSvtiiiiiie ettt e e e e e eeeabba e e e e e e e eeeeessnnns 214
Passing Arguments Between Fortran and C Procedures.............cccoevevvvvnnnnn. 215
Error HANAINGuuiiiiiiiiiiiiii et e e 215
Error Handling OVEIVIEWccieei it e e e e e e e e e e e e e e e eeeennnes 215

XX

Table Of Contents

Run-Time Library Default Error ProCeSSinguuueeiiieeeeiieeiiiiiiieieeeeeeeeeeninnnns 215
RuUn-Time Message FOrmMat.............uuiiiiiiiiiiieiiee e 217
Message Catalog File LOCAtIONceiiiieiiiiiiiiiiiie e 218
Values Returned to the Shell at Program Terminationccccoevveeeiiieennns 219
Forcing a Core Dump for SEVEre ErTOrS..........uuuuiiiiieeeiiiieiiiiieae e 219

Handling RUN-TIME EITOIScooiiiiiiiiiiiiiiiiii 220
Using the END, EOR, and ERR Branch Specifierscccccovvveeeiviieeiiinnnnnnn. 220
Using the IOSTAT SPECITIEN ...covveeeeiiiicie e e e e e eeaaeees 222

I T [=V = 1 To | 1 o 223

Overriding the Default Run-Time Library Exception Handler 224

Obtaining Traceback Information with TRACEBACKQQc.cceevvriviiiiiiiiieeennn. 225
USING LIDIari@soooeeieiieee et eeeees 226

UsSING LiDraries OVEIVIEWc.cooiiiiiiiiiiiiei et eeeeeneees 226

Libraries Provided by Intel FOrtran...........cccccoo 226

Portability LIDIrary ... 227

Portability Library OVEIVIEWccoveeiuiiiiie e e e e e e e e e e e eaennnees 227

Using the Portability Library libifport.a.........ccccoooviiiiiiiee e, 228

Portability ROULINESouiiiiiii e e e e e e e eeannens 228
Information Retrieval ROULINEScooviiiiiiiiiii 228
Process Control ROULINES...........uuuuuuiiiiiiiiiiiiiiiiiieiiiiieeeeeseeeeeeeeeeeeeeeeeeeeeeeeeeeees 229
Numeric Values and Conversion ROULINESuuuruieiviiieeiiiiiiieieeeieeeeeeneene 229
INput aNd OULPUL ROUTLINESoviiiiiiiiiiiiiiiieiieeeeeeeeeee ettt 229
Date and TiMe ROULINES.........oooiiiiiiiiiie e 230

XXi

Table Of Contents

Error Handling ROULINEScooviiiiiiiiiee et e e e e e eeeannne 231
System, Drive, or Directory Control and Inquiry Routinescc.vvvveenn. 231
AddItIONAl ROULINESoeiiiiiiiiiiiieiiee et a e 231
Math LIDFariescoooiiiiiii 231
Reference INfOrmation...............ueeeiiieiiiiiiiiiiiiiii e eeees 232
Compile-Time Environment Variables. ..o 232
Run-Time Environment Variablescccccoi 233
Key [A-32 Compiler FileS SUMMAIYcciieiiiiiiiieiiiiies e e e e e e e eeeeannnns 235
Key Itanium®-Based Compiler Files SUMMArycccceevvvveeiiiiiiiiieeeeeeeeeiiiines 236
(@] o] o] =T g I T3 1 €SO SSRPPPIPRPN 237
Hexadecimal-Binary-Octal-Decimal CONVErSIONSccccoeevvvvvviiiiiiiiiieeeeeeeeeeens 238
Compatibility with Previous Versions of Intel® Fortranccoeevevveeeiiinnnnnnn. 239

Differences Between Intel Fortran Version 7.1 and Intel Fortran Version 8...239

Documentation INFOrMAatioNuuueiiiiieieiieeeiirre e e e e e e e eeeeees 240
Version 7.1 Features Not Available in Intel Visual Fortran Version 8 240
RUN-TIME ErrOr MESSAQgESot iieeiiieeeiiiiiii e e e e e e ee ettt s s e e e e e e e e eeaaan s e e e e e e eeeennnes 241
0 = G 261

XXii

About the Intel® Fortran Compiler

The Intel® Fortran Compiler version 8.0 compiles code targeted for the 1A-32
Intel® architecture and Intel® Itanium® architecture.

The Intel Fortran Compiler product includes the following components for the
development environment:

+ Intel Fortran Compiler for 32-bit Applications
+ Intel Fortran Compiler for Itanium-based Applications
+ Intel Debugger (idb)

The Intel Fortran Compiler for Itanium-based applications includes the Intel
Itanium Assembler and Intel Itanium Linker.

See also How to Use This Document.

How to Use This Document

This is Volume 1 in the two-volume Intel® Fortran Compiler for Linux* Systems
User's Guide. It explains how you can use the Intel Fortran Compiler to build
applications. Volume Il explains how to optimize applications.

This User's Guide provides information on how to get started with Intel Fortran,
how the compiler operates, and how to develop applications.

This documentation assumes that you are familiar with the Fortran Standard
programming language and with the Intel® processor architecture. You should
also be familiar with the host computer's operating system.

B Note

This document explains how information and instructions apply differently to
each targeted architecture. If there is no specific indication to either
architecture, the description is applicable for both architectures.

Additional Documentation

Besides the two volumes of the User's Guide, you should also have access to
these manuals:

+ Intel®Fortran Compiler Options Quick Reference Guide for Linux*
Systems
+ Intel® Fortran Language Reference

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building

Applications

» Intel® Fortran Libraries Reference
+ Intel® Fortran Release Notes

Notation Conventions

This manual uses the following conventions.

Intel® Fortran

The name of the common compiler language
supported by the Intel® Visual Fortran Compiler
for Windows* and Intel Fortran Compiler for
Linux* products.

This type style

Elements of syntax, reserved words, option
keywords, variables, file names, and code
examples are shown in a monospaced font. The
text appears in lowercase unless uppercase is
required.

THIS TYPE STYLE

Statements, keywords, and directives are shown
in all uppercase, in a normal font. For example,
“add the USE statement...”

This type style Bold normal text shows menu names, menu
items, button names, dialog window names, and
other user-interface items.

File>Open Menu names and menu items joined by a greater

than (>) sign indicate a sequence of actions. For
example, "Click File>Open " indicates that in the
File menu, click Open to perform this action.

This type style

Bold, monospaced text indicates user input.
Shows what you type as command or input.

This type style

Italic, monospaced text indicates placeholders for
information that you must supply. Italics are also
used to introduce new terms.

[opti ons]

Items inside single square brackets are optional.
(In some examples, square brackets are used to
show arrays.)

{val ue | val ue}

Braces and a vertical bar indicate a choice among
two or more items. You must choose one of the
items unless all of the items are also enclosed in
square brackets.

A horizontal ellipsis (three dots) following an item
indicates that the item preceding the ellipsis can
be repeated. In code examples, a horizontal
ellipsis means that not all of the statements are
shown.

Microsoft* Windows XP*

An asterisk at the end of a word or name

2

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

| indicates it is a third-party product trademark. \

Getting Started

Getting Started Overview

See these topics:

How You Can Use the Intel Fortran Compiler
Compilation Phases

Preprocess Phase

Assemblers and Linker

Default Behavior of the Intel Fortran Compiler
Input Files and Filename Extensions

File Specifications

Output Files

Temporary Files Created by the Compiler or Linker

How You Can Use the Intel® Fortran

Compiler

The Intel® Fortran Compiler has the following variations:

« The Intel® Fortran Compiler for 32-bit Applications is designed for IA-32
systems. The 1A-32 compilations run on any IA-32 Intel processor and
produce applications that run on 1A-32 systems. This compiler can be
optimized specifically for one or more Intel® 1A-32 processors, such as
Pentium M, Pentium 4, and Xeon™.

« The Intel® Fortran Itanium® Compiler for Itanium® -based Applications, or
native compiler, is designed for Itanium architecture systems. This
compiler runs on Itanium-based systems and produces Itanium-based
applications. Itanium-based compilations can only operate on Itanium-
based systems.

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

The command to invoke either of these compilersisifort.

The Intel® Fortran Compiler has a variety of options that enable you to use the
compiler features for higher performance of your application.

The Intel® Fortran Compiler enables your software to perform the best on Intel
architecture-based computers. The compiler has several high-performance
optimizations. Some of its features and benefits are:

What feature might you want How will this help you?

to use?

Support for Streaming SIMD Intel microarchitecture benefit.

Extensions (SSE) and

Streaming SIMD Extensions 2

(SSE2)

Automatic vectorizer Parallelism in your code achieved
automatically.

Parallelization Automatic generation of multithreaded code
for loops. Shared memory parallel
programming with OpenMP*.

Floating-point optimizations Improved floating-point performance.

Data prefetching Improved performance due to the
accelerated data delivery.

Interprocedural optimizations Better performance for larger applications.

Whole program optimization Improved performance between modules in
larger applications.

Profile-guided optimization Improved performance based on profiling the
frequently used procedures.

Processor dispatch Use of the latest Intel architecture features
while maintaining object code compatibility
with previous generations of Intel®
Pentium® processors.

Compilation Phases

The compiler processes Fortran language source and generates object files. You
decide the input and output by setting options when you run the compiler.

When invoked, the compiler determines which compilation phases to perform
based on the extension of the source filename and on the compilation options
specified in the command line.

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building

Applications
The compilation phases and the software that controls each phase are shown
below:
Compilation Controlling IA-32 or Itanium®-based applications?
phase software
Preprocess
(optional) fpp Both
Compile fortcom Both
Assemble , as for IA-32 applications; i as for Itanium-
. as orias .
(optional) based applications
Link [d(1) Both

By default, the compiler generates an object file directly without calling the
assembler. However, if you need to use specific assembly input files and then
link them with the rest of your project, you can use an assembler for these files.

The compiler passes object files and any unrecognized filename to the linker.
The linker then determines whether the file is an object file (. 0) or a library (. a)
or shared library (. s0).The compiler handles all types of input files correctly.
Thus, you can use it to invoke any phase of compilation.

Preprocess Phase

Preprocessing performs such tasks as preprocessor symbol (macro) substitution,
conditional compilation, and file inclusion. The compiler preprocesses files as an
optional first phase of the compilation. Source files that have a filename
extension of . f pp, . F, . F90, . FOR, . FTN, or . FPP are automatically
preprocessed by the compiler. For example, the following command
preprocesses a source file that contains standard Fortran preprocessor
directives, then passes the preprocessed file to the compiler and linker:

ifort source.fpp

If you want to preprocess files that have another extension, you have to overtly
specify the preprocessor.

You do not usually need to specify preprocessing for Fortran source programs.
The preprocessor is necessary only if your program uses C-style preprocessing
commands, such as #i f , #def i ne, and so forth.

If you choose to preprocess your source programs, you must use the
preprocessor fpp, which is the preprocessor supplied with the Intel® Fortran
Compiler, or the preprocessing capability of a Fortran compiler. It is
recommended that you use fpp.

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

If you want to use another preprocessor, you must invoke it before you invoke
the compiler.

fpp conforms to cpp and accepts the cpp-style directives. cpp (and thus fpp)
prohibit the use of a string constant value in an #i f expression.

You can use the Preprocessor Options on the command line to direct the
operations of the preprocessor.

ACaution

Using a preprocessor that does not support Fortran can damage your Fortran
code, especially with FORMAT statements. For example, FORVAT (\\ 1 4)
changes the meaning of the program because the backslash "\ " indicates end-
of-record.

Assemblers and Linker

The assemblers and linker you can use are summarized in this table:

Tool Default Provided with Intel Fortran
Compiler?

IA-32 assembler | Linux* assembler, as No

[tanium® Intel® Itanium® Yes

assembler assembler, i as

Linker System linker, | d(1) No

You can specify alternate tool locations and options for preprocessing,
compilation, assembly, and linking.

See also Libraries Provided by Intel Fortran.

Assemblers

For 32-bit applications, Linux supplies its own assembler, as.

For Itanium-based applications, use the Itanium assembler, i as. For example,
to link some specific input file to the Fortran project object file, do the following:

1. Issue a command using the -S option to generate an assembly code file,
file.s:ifort -S -c file.f

2. Toassemble thefi |l e. s file, call the Itanium® assembler with this
command:ias -Nso -p32 -o file.o file.s

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

where the following assembler options are used:
- Nso suppresses the sign-on message.

- p32 enables defining 32-bit elements as relocatable data elements. (This option
is available for backward compatibility.)

-0 fil e. oindicates the output object filename.

Linker

The compiler calls the system linker, | d(1) , to produce an executable file from
the object files.

Default Behavior of the Intel Fortran

Compiler

The compiler generates one or more executable files of one or more input files.
By default, it performs the following actions:

« Searches for all files, including library files, in the current directory.

« Passes options designated for linking to the linker.

- Passes user-defined libraries to the linker.

- Displays error and warning messages.

- Performs default settings and optimizations, unless these options are
overridden by specific options settings.

« For IA-32 applications, uses the - t pp7 option to optimize the code for the
Intel® Pentium® 4 and Intel® Xeon™ processor.

« For Iltanium® -based applications, uses the - t pp2 option to optimize the
code for the Intel® Itanium® 2 processor.

f} Note

On operating systems that support characters in Unicode* (multi-byte)
format, the compiler will process file names containing Unicode* characters.

Input Files and Filename Extensions

The Intel Fortran Compiler interprets the type of each input file by its flename
extension, suchas . a,.f,.for,.o0,and soon:

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

Filename Interpretation Action

filenane.a Object library Passed to | d.

filenane.f Fortran fixed- Compiled by the Intel® Fortran
filename.ftn | form source compiler.

filename. for

filename.i

fil ename. fpp | Fortran fixed- Preprocessed by the Intel Fortran
filenane. F form source preprocessor f pp; then compiled by the

fil enane. F90
filenane. FOR
fil enane. FTN
fil enane. FPP

Intel Fortran compiler.

filenane. f90 | Fortran free-form | Compiled by the Intel Fortran compiler.
filename.i90 | source

filenane.s Assembly file Passed to the assembler (IA-32
compiler) or the Intel Itanium®
assembler (Itanium-based compiler).

filenane.o Compiled object | Passed to | d.
file

You can use the compiler configuration file to specify default directories for input
libraries. To specify additional directories for input files, temporary files, libraries,
and for the files used by the assembler and the linker, use compiler options that
specify output file and directory names.

File Specifications

A complete file specification consists of a file name usually preceded by a
pathname that specifies a directory. The pathname can be in one of two forms:

- An absolute pathname, where the directory is specified relative to the root
directory. The first character is a slash (/). For example, the following
directory and file name refer to the file named t est dat a in the
[usr/ user s/ gdat a directory: / usr/ user s/ gdat a/ t est dat a

- Arelative pathname, where the specified directory is relative to the current
directory. Relative pathnames do not begin with a slash (/). The following
example uses a relative pathname from the current directory / usr/ user s

to refer to the same file t est dat a in the gdat a/ subdirectory:
gdat a/ t est dat a

Directory names and file names should not contain any operating system
wildcard characters (such as *, ?, and the [] construct). You can use the tilde
(~) character as the first character in a pathname to refer to a top-level directory
as in the C shell.

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

When specifying files, keep in mind that trailing and leading blanks are removed
from character expression names, but not from Hollerith (numeric array) names.

File names are case-sensitive and can consist of uppercase and lowercase
letters. For example, the following file names represent three different files:

nmyfile.for
MYfile.for
MYFI LE. f or

Output Files

The output produced by the i f ort command includes:

« An object file (such as t est . 0), if you specify the - ¢ option on the
command line. An object file is created for each source file.

« An executable file (such as a. out), if you omit the - ¢ option.

« One or more module files (such as dat adef . nod), if the source file contains
one or more MODULE statements.

You control the production of these files by specifying the appropriate options on
the command line.

The compiler generates a temporary object file for each source file, unless you
specify the - ¢ option. The linker is then invoked to link the object files into one
executable program file and the temporary object files are deleted.

If you specify the - ¢ option, the object files are created and retained in the
current working directory. You must link the object files later by using a separate
i fort command. This allows incremental compilation of a large application,
perhaps by means of a makefile processed by the make command.

If fatal errors are encountered during compilation, or if you specify certain options
such as - ¢, linking does not occur.

FlNote

To compile all objects over the entire program, use the - i po option.

To specify a file name for the executable program file (other than a. out), use the
-0 out put option, where out put specifies the file name. The following command
requests a file name of prog1. out for the source filet est 1. f:

ifort -o progl.out testl.f

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

If you specify the - ¢ option with the - o out put option, you rename the object file
(not the executable program file). If you specify - ¢ and omit the - o out put option,
the compiler names the object files with a . o suffix substituted for the source file
suffix.

leote
You cannot use - ¢ and - o together with multiple source files.

The default optimization level is - @ (unless you specify - g).

Temporary Files Created by the

Compiler or Linker

Temporary files created by the compiler or linker reside in the directory used by
the operating system to store temporary files.

To store temporary files, the driver first checks for the TMP environment variable.
If defined, the directory that TMP points to is used to store temporary files.

If the TMP environment variable is not defined, the driver then checks for the
TMPDI R environment variable. If defined, the directory that TMPDI R points to is
used to store temporary files.

If the TMPDI R environment variable is not defined, the driver then checks for the
TEMP environment variable. If defined, the directory that TEMP points to is used to
store temporary files.

If the TEMP environment variable is not defined, the / t np directory is used to
store temporary files.

Building Applications

Building Applications Overview

See these topics about Intel® Fortran:
Controlling the Compilation Process

Setting and Viewing Environment Variables

10

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

Compile-Time Environment Variables

Running the Shell Script to Set Up the Environment Variables
Invoking the Intel Fortran Compiler

Examples of the ifort Command

Using Module (.mod) Files

Searching for Include and .mod Files

Configuration Files and Response Files

Specifying Alternative Tool Locations and Options
Predefined Preprocessor Symbols

Redirecting Command-Line Output to Files

Creating, Running, and Debugging an Executable Program
Creating Shared Libraries

Allocating Common Blocks

Controlling the Compilation Process

To customize the environment used during compilation, you can specify
variables, options, and files as follows:

« Environment variables to specify paths where the compiler searches for
special files such as libraries and "include" files

« Configuration files to specify the options used for every compilation and
response files to specify the options and files used for individual projects

Setting and Viewing Environment

Variables

You can use the SET command to view or set environment variables one at a
time. You can also set environment variables by using thei fort vars. csh
and i fortvars. shfiles to set several at a time. The files are found in this

11

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

directory: / opt /i ntel _fc_80/ bi n. See Running the Shell Script to Set Up
the Environment Variables.

Wthin the C Shell, use the set env command to set an environment variable:

setenv FORT8 /usr/users/smth/test. dat

To remove the association of an environment variable and its value within the C
shell, use the unset env command.

unset env FORT8

Within the Bourne shell (sh), the Korn shell (ksh), and the bash shell, use the
export command and assignment command to set the environment variable:

export FORT8
FORT8=/ usr/users/smth/test.dat

To remove the association of an environment variable and its value within the
Bourne shell, the Korn shell, or the bash shell, use the unset command:

unset FORT8

Configuration File Environment Variables

By default, the compiler picks up the default configuration file (i f ort . cf g) from
the same directory where the compiler executable resides. However, if you want
the compiler to use another configuration file in a different location, you can use
the | FORTCFG environment variable to assign the directory and filename for the
other configuration file.

See Also

Compile-Time Environment Variables

Run-Time Environment Variables

Running the Shell Script to Set Up

the Environment Variables

Before you first invoke the compiler, you need to set the environment variables to
specify locations for the various components.

12

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

The Intel Fortran Compiler installation includes a shell script that you can use to
set environment variables.

Use the sour ce command to execute the shell script from the command line.
For example, to execute this script file for the bash shell:

source /opt/intel _fc_80/bin/ifortvars.sh
If you use the C shell, use the . csh version of this script file:

source /opt/intel _fc_80/bin/ifortvars. csh

If youwanti f ortvars. sh to run automatically when you start Linux*, edit your
. bash_profil e file and add the line above to the end of your file. For example:

set up environnment for Intel conpiler
source /opt/intel fc 80/bin/ifortvars.sh

Invoking the Intel Fortran Compiler

You can invoke the Intel® Fortran Compiler in either of two ways:

« Usingthei fort command
« Using the make command to specify a makefile

Using the ifort Command

The syntax is:

ifort [options] input file(s)

An opt i on is specified by one or more letters preceded by a hyphen.

Some options take arguments in the form of filenames, strings, letters, or
numbers. Except where otherwise noted, you can enter a space between the
option and its argument(s) or you can combine them. See Compiler Options

Overview.

You can specify more than one i nput _fi | e, using a space as a delimiter. See
Input Files and Filename Extensions.

B Note

13

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

Options on the command line apply to all files. For example, in the following
command line, the - ¢ and - nowar n options apply to both files x. f and

y. f:
ifort -c x.f -nowarn y.f

Using the make Command

To compile a number of files with various paths and to save this information for
multiple compilations, you can use a makefile to invoke the Intel® Fortran
Compiler.

To use a makefile to compile your input files, make sure that / usr/ bi n and
[usr /1 ocal /bi n are in your path.

If you use the C shell, you can edit your . cshr c file and add the following:
setenv PATH /usr/bin:/usr/local/bin:yourpath

Then you can compile as:

make -f yourmakefile

where - f is the make command option to specify a particular makefile.

Examples of the ifort Command

Compiling and Linking Multiple Files

The following i f ort command compiles the Fortran free-format source files
aaa. f 90, bbb. f 90, and ccc. f 90. The command invokes the | d linker and
passes the temporary object file to the linker, which it uses to produce the
executable file a. out :

ifort aaa.f90 bbb.f90 ccc.f90

The following i f ort command compiles all file names that end with . f . as
Fortran fixed-format source. The linker produces the a. out file:

ifort *.f

Preventing Linking

14

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

The following i f ort command compiles, but does not link, the free-format
source file t ypedefs_1. f 90, which contains a MODULE TYPEDEFS_1. The
command creates filest ypedef s_1. nod and t ypedef s_1. o. The object file is
retained automatically. Specifying the - ¢ option prevents linking:

ifort -c typedefs_1.f90

Compiling Fortran 95/90 and C Source Files

The following i f ort command compiles the free-format Fortran main program
mypr og. f 90., which references the module TYPEDEFS 1 with a USE
TYPEDEFS_1 statement (it uses the object file created in the previous example).
The module file t ypedef s_1. nod is read from the current directory. The main
program calls a function written in C. The C routine named uti l i tyx_is
declared in a file named uti | i tyx. c:

ifort nmyprog.f90 typedefs 1.0 utilityx.c
i fort does not recognize a source file with a . ¢ extension as needing to be

compiled by the C compiler. Instead, it passes it as an "unknown" to the linker.
You will need to call the C compiler to compile uti lityx. c.

Renaming the Output File

The following i f ort command compiles the free-format Fortran source files
circle-cal c.f90 and sub. f 90 together:

ifort -c circle-calc.f90 sub.f90

The default optimization level - O2 applies to both source files during
compilation. Because the - ¢ option is specified, the object files are not passed to
the linker. In this case, the named output files are the object files.

Like the previous command, the following i f ort command compiles multiple
source files:

ifort -o circle.out circle-calc.f90 sub.f90

Because the - ¢ option was omitted, an executable program named
ci rcl e. out is created.

Specifying an Additional Linker Library

15

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

The following i f ort command compiles a free-format source file nypr og. f 90
using default optimization, and passes an additional library for the linker to
search:

ifort typedefs_1.0 nyprog.f90 -Inylib

The file is processed at optimization level - Q2 and then linked with the object file
typedefs 1.0 . The -1 nyl i b option instructs the linker to search in the

i bnyli b library for unresolved references (in addition to the standard list of
libraries the i f ort command passes to the linker).

Using Module (.mod) Files

A module (. nod file) is a type of program unit that contains specifications of such
entities as data objects, parameters, structures, procedures, and operators.
These precompiled specifications and definitions can be used by one or more
program units. Partial or complete access to the module entities is provided by
the USE statement. Typical applications of modules are the specification of
global data or the specification of a derived type and its associated operations.

Some programs require modules located in multiple directories. You can use the
- 1 di r option when you compile the program to locate the . nod files that should
be included in the program.

You can use the - nodul e pat h option to specify the directory where to create
the module files. This path is also used to locate module files. If you don't use
this option, module files are created in the default path.

You need to make sure that the module files are created before they are
referenced by another program or subprogram.

Compiling Programs with Modules

If a file being compiled has one or more modules defined in it, the compiler
generates one or more . nod files. For example, a file a. f 90 contains modules
defined as follows:

nodul e t est
integer:: a
cont ai ns
subroutine f()
end subroutine
end nodul e
nodul e payr ol

16

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

énd nmodul e

This compiler command:

ifort -c a.f90

generates the following files:

« test.nod

- test.o

« payroll.nod
« payroll.o

The . nod files contain the necessary information regarding the modules that
have been defined in the program a. f 90.

If the program does not contain a module, no . nod file is generated. For
example, t est 2. f 90 does not contain any modules. This compiler command:

ifort -c test2.f90
produces just an object file, t est 2. o.

For another example, assume that fi | el1. f 90 contains one or more modules
andfil e2.f90 contains one or more program units that access these modules
with the USE statement. The sources can be compiled and linked by this
command:

ifort filel.f90 file2.f90

Working with Multi-Directory Module Files

For an example of managing modules when the . nod files could be produced in
different directories, assume that the program nod_def . f 90 resides in directory
[usr/yourdir/test/t,and this program contains a module defined as
follows:

file: nod _def.f90
modul e defi nednod

énd modul e

The compiler command:

17

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

ifort -c nod _def.f90

produces two files: nod_def. o and def i nednod. nod in directory
lusr/yourdir/test/t.

If you need to use the above . nod file in another directory, for example, in
directory / usr/yourdir/test/t 2, where the program usenod uses the
def i nednod. nod file, do the following:

file: use_nod_def.f90
pr ogr am usenod
use defi nednod

end program
To compile the above program, use this command:

ifort -c use_nod def.f90 -1/usr/yourdir/test/t

where the - | di r option provides the compiler with the path to search and locate
the def i nednod. nod file.

Parallel Invocation with a makefile

The programs in which modules are defined support the compilation mechanism
of parallel invocation with a makefile for interprocedural optimizations of multiple
files and of the whole program. Consider the following code:

test1l.f90
modul e ml

end nodul e
test2.f90
subroutine s2()
use ml

end subrouti ne
test3.f90
subroutine s3()
use ml

18

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

end subrouti ne

The makefile to compile the above code looks like this:

mL. nrod: testl.o0
testl. o:

ifort -c testl.f90
test2.0: ml. nod
ifort -c test2.f90
test3.0: ml. nod
ifort -c test3.f90

Searching for Include and .mod Files

Include files are brought into a program with the #i ncl ude preprocessor
directive or a Fortran INCLUDE statement.

Directories are searched for include files in this order:

Directory of the source file that contains the include
Directories specified by the - | di r options

Current working directory

Directories specified with the FPATH environment variable

PonNE

The locations of directories to be searched are known as the include file path.
More than one directory can be specified in the include file path.

A module (. nod) file is specified in a program by a USE statement. Module files
can be located in multiple directories.

Directories are searched for . nod files in this order:

Directory of the source file that contains the USE statement
Directories specified by the - nodul e pat h option
Directories specified by the - 1 di r option

Current working directory

Directories specified with the FPATH environment variable

arwnNpE

Specifying and Removing an Include File Path

You can use the -1dir option to indicate the location of include files and
module files.

19

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

To prevent the compiler from searching the default path specified by the FPATH
environment variable, use the - X option.

You can specify these options in the configuration file, i f ort . cf g, or on the
command line.

For example, to direct the compiler to search the path / al t/i ncl ude instead of
the default path, use the following command line:

-X -1 /alt/include newin. f

Configuration Files and Response

Files

Configuration files and response files are slightly different variations in the same
idea--the concept that you can use files with various options to eliminate the
need to enter the same commands again and again. (Response files are also
known as indirect command files.)

Configuration Files

You can use a configuration (. cf g) file to:

« Decrease the time you spend entering command-line options
« Ensure consistency of often used commands

You can insert any valid command-line options into a configuration file. The
compiler processes options in the configuration file in the order in which they

appear followed by the command-line options that you specify when you invoke
the compiler.

FlNote

Options placed in the configuration file will be included each time you run the
compiler. If you have varying option requirements for different projects, use
response files.

By default, a configuration file named i f ort. cf g is used.

This file resides in the same directory where the compiler executable resides.

20

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

However, if you want the compiler to use another configuration file in a different
location, you can use the | FORTCFG environment variable to assign the directory
and file name for the other configuration file.

Example Configuration File

An example configuration file is shown below. The pound (#) character indicates
that the rest of the line is a comment.

Exanple ifort.cfg file

#H

Define preprocessor macro MY_PRQIECT.
- DMY_PRQIECT

#H

Set extended-1ength source |ines.
-extend_source

##t

Set maxi mum fl oati ng-point significand precision.
- pc80

#t

Response Files
You can use response files (also known as indirect command files) to:

« Specify options used during particular compilations for particular projects
« Save this information in individual files

Response files are invoked as an option on the command line. Options specified
in a response file are inserted in the command line at the point where the
response file is invoked.

Like configuration files, response files are used to:

« Decrease the time you spend entering command-line options
« Ensure consistency of often used commands

However, options in a configuration file are executed every time you run the
compiler. In contrast, you use response files to maintain options for individual
projects.

You can place any number of options or file names on a line in the indirect
command file or response file. Several files can be referenced in the same
command line.

The syntax for using response files is:

21

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

ifort @esponsefile [@esponsefile2...]

An "at" sign (@ must precede the name of the response file on the command
line.

Specifying Alternative Tool Locations

and Options

The Intel® Fortran compiler lets you specify alternative tool locations and tool
options to be used instead of default tools for preprocessing, compilation,
assembly, and linking. You can use command-line options to do this.

Using -Qlocation to Specify an Alternative
Location for a Tool

- Q ocat i on lets you specify the pathname location of a supporting
preprocessor, compiler, assembler, or linker. This option's syntax is:

-Q ocation,tool, path

where t ool is:

fpp Intel Fortran preprocessor (fpp)
f Intel Fortran compiler (fortcom)
c Intel C compiler

as Assembler

[ink Linker

and pat h is the location of the tool.

Example :

ifort -Q ocation,fpp,/usr/preproc nyprog.f

Using -Qoption to Pass Options to Tools

- Qopt i on lets you pass options to the preprocessor, compiler, assembler, or
linker. This option's syntax is:

- Qoption,tool, options

22

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

where t ool is:

- fpp Intel Fortran preprocessor (fpp)
. f Intel Fortran compiler (fortcom)
« C Intel C compiler

« as Assembler

« link Linker

and opti ons is one or more valid argument strings for the designated tool.

If the argument contains a space or tab character, you must enclose the entire
argument in quotation marks (" "). You must separate multiple arguments with
commas.

The following example directs the linker to link with an alternative library:

ifort -Qoption,link,-Inylib progl.f

Predefined Preprocessor Symbols

Preprocessor symbols (macros) let you substitute values in a program before it is
compiled. The substitution is performed in the preprocessing phase.

Some preprocessor symbols are predefined by the compiler system and are
available to compiler directives and fpp. If you want to use others, you need to
specify them on the command line.

See also Preprocessor Options.
The predefined preprocessor symbols available for the Intel® Fortran compiler

are described in the table below. The Default column describes whether the
preprocessor symbol is enabled (on) or disabled (off) by default.

Symbol Name Default Architecture Description

__INTEL_COWPI LER=n On, n=800 Both Identifies the Intel
Fortran Compiler

__linux__ Both Defined at the start of

__linux compilation

_gnu_linux__

i nux

_unix__

__unix

uni x

__ELF

i386 IA-32

23

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

__i386

i386

__iab4 [tanium®

__iab4

ia64

_OPENVP=N n=200011 Both This preprocessor

symbol has the form
YYYYMM where YYYY
is the year and MM is
the month of the
OpenMP Fortran
specification supported.
This preprocessor
symbol can be used in
both fpp and the Fortran
compiler conditional
compilation. It is
available only - opennp
is specified.

_PRO_I NSTRUMENT Off Both Defined when -

pr of _gen is specified.

Defining Preprocessor Symbols

You can use the -D option to define the symbol names to be used during
preprocessing. This option performs the same function as the #def i ne
preprocessor directive. The format of this option is:

- Dnane[=val ue]
where:

« nane is the name of the symbol to define
« val ue specifies an optional val ue to substitute for nane

If you do not enter a value, name is set to 1. The value should be enclosed in
guotation marks if it contains spaces or special characters.

Preprocessing replaces every occurrence of nanme with the specified val ue. For
example, to define a symbol called SI ZE with the val ue 100, use the following
command:

ifort -fpp -DSI ZE=100 progl. f

24

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

Preprocessing replaces all occurrences of SI ZE with the specified value (100)
before passing the preprocessed source code to the compiler. Assume that the
program contains this declaration:

REAL VECTOR(S| ZE)

In the code sent to the compiler, the value 100 replaces Sl ZE in this declaration,
and in all other occurrences of the name S| ZE.

Suppressing Preprocessor Symbols

You can use the - U option to suppress an automatic definition of a preprocessor
symbol. This option suppresses any symbol definition currently in effect for the
specified name. The - U option performs the same function as an #undef
preprocessor directive.

Redirecting Command-Line Output to

Files

For programs that display a lot of text, consider redirecting text that is usually
displayed on st dout to a file. Displaying a lot of text will slow down execution;
scrolling text in a terminal window on a workstation can cause an 1/O bottleneck
(increased elapsed time) and use more CPU time.

The following commands show how to run the program more efficiently by
redirecting output to a file and then displaying the program output:

myprog > results.lis
nore results.lis

Redirecting output from the program will change the times reported because of
reduced screen 1/0O.

Creating, Running, and Debugging an

Executable Program

The example below shows a sample Fortran main program using free source
form that uses a module and an external subprogram.

The function CALC_AVERAGE is contained in a separate file and depends on
the module ARRAY_CALCULATOR for its interface block.

25

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

The USE statement accesses the module ARRAY_ CALCULATOR. This module
contains the function declaration for CALC_AVERAGE.

The 5-element array is passed to the function CALC_AVERAGE, which returns
the value to the variable AVERAGE for printing.

The example is:

I File: main.f90
I This program cal cul ates the average of five nunbers
PROGRAM MAI N
USE ARRAY_CALCULATOR
REAL, DIMENSION(5) :: A=0
REAL :: AVERACE
PRINT *, 'Type five nunbers: '
READ (*,'(F10.3)') A
AVERAGE = CALC_AVERAGE(A)
PRI NT *, 'Average of the five nunbers is: ', AVERAGE
END PROGRAM MAI N

The example below shows the module referenced by the main program. This
example program shows more Fortran 95/90 features, including an interface
block and an assumed-shape array:

I File: array_calc.f90.
I Mobdul e containing various cal cul ati ons on arrays.
MODULE ARRAY_CALCULATOR
| NTERFACE
FUNCTI ON CALC_AVERAGE(D)
REAL :: CALC_AVERAGE
REAL, | NTENT(IN) :: 2)
END FUNCTI ON CALC_ AVERAGE
END | NTERFACE
I O her subprograminterfaces...
END MODULE ARRAY_CALCULATOR

The example below shows the function declaration CALC_AVERAGE referenced
by the main program:

I File: calc_aver.f90.
I External function returning average of array.
FUNCTI ON CALC_AVERAGE(D)
REAL :: CALC AVERAGE
REAL, INTENT(IN) :: D(:)
CALC AVERAGE = SUMD) / UBOUND(D, DIM = 1)
END FUNCTI ON CALC AVERAGE

Commands to Create a Sample Program

26

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

During the early stages of program development, the sample program files
shown above might be compiled separately and then linked together, using the
following commands:

ifort -c array_calc.f90

ifort -c calc_aver.f90

ifort -c main.f90

ifort -o calc main.o array _calc.o calc_aver.o

In this sequence of commands:

« The -c option prevents linking and retains the . o files.

« The first command creates the files array_cal cul at or. nod and
array_cal c. o (the name in the MODULE statement determines the name
of module file array_cal cul at or. nod) . Module files are written into the
current working directory.

« The second command creates the file cal c_aver. o.

« The third command creates the file mai n. o0 and uses tOhe module file
array_cal cul at or. nod.

« The last command links all object files into the executable program named
cal c. To link files, use the i f ort command instead of the | d command.

The order in which the file names are specified is significant. Thisi f ort
command:

« Compiles the file array_cal c. f 90, which contains the module definition,
and creates its object file and the file array_cal cul at or. nod.

« Compiles the file cal c_aver. f 90, which contains the external function
CALC_AVERAGE.

« Compiles the file mai n. f 90 (main program). The USE statement
references the module file array_cal cul at or. nod.

« Uses | d to link the main program and all object files into an executable
program file named cal c.

Running the Sample Program

If your path definition includes the directory containing cal ¢, you can run the
program by simply entering its name:

calc

When running the sample program, the PRINT and READ statements in the main
program result in the following dialogue between user and program:

Type five nunbers:
55.5

27

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

4.5
3.9
9.0
5.6
Average of the five nunbers is: 15. 70000

Debugging the Sample Program

To debug a program with the debugger, compile the source files with the - g
option to request additional symbol table information for source line debugging in
the object and executable program files. The following i f ort command also
uses the - o option to name the executable program file cal c_debug:

ifort -g -0 calc_debug array _calc.f90 calc_aver.f90 main. f90

See also Debugging Overview and related sections.

Creating Shared Libraries

To create a shared library from a Fortran source file, process the files using the
i fort command:

« You must specify the - shar ed option to create the . so file.

« You can specify the - o out put option to name the output file.

+ If you omit the - ¢ option, you will create a shared library (. so file) directly
from the command line in a single step.

If you also omit the - o out put option, the file name of the first Fortran file
on the command line is used to create the file name of the . so file. You
can specify additional options associated with shared library creation.

+ If you specify the - c option, you will create an object file (. o file) that you
can name with the - o option. To create a shared library, process the . o file
with | d , specifying certain options associated with shared library creation.

« When building shared libraries on Itanium-based systems, you must
specify the - f pi ¢ option for the compilation of each object file included in
the shared library. If this option is not used, the linker will probably emit an
error message like @prel rel ocation agai nst dynam ¢ synbol .

Creating a Shared Library with a Single ifort
Command

You can create a shared library (. so) file with a single i f ort command:

ifort -shared octagon.f90

28

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

The - shar ed option is required to create a shared library. The name of the
source file is oct agon. f 90. You can specify multiple source files and object files.

The - o option was omitted, so the name of the shared library file is
oct agon. so.

Since you omitted the - ¢ option, you do not need to specify the standard list of
Fortran libraries.

Creating a Shared Library with ifort and Id
Commands

You first must create the . o file, such as oct agon. o in the following example:

ifort -c octagon.f90

The file oct agon. o is then used as input to the | d command to create the shared
library named oct agon. so:

I d -shared -no_archive octagon.o \
-lifport -lifcorem -linf -Im-lirc -lcxa \
-lunwind -l pthread -Ic

Note the following:

« The -shar ed option is required to create a shared library.

« The -no_archi ve option indicates that | d should not search archive
libraries to resolve external names (only shared libraries).

« The name of the object file is oct agon. 0. You can specify multiple object
(. o) files.

« The-libport and subsequent options are the standard list of libraries that
thei f ort command would have otherwise passed to | d. When you
create a shared library, all symbols must be resolved.

It is probably a good idea to look at the output of the - dr yr un command to find
the names of all the libraries used so you can specify them correctly.

You can use the -Qopt i on command to pass options to | d.

See also the 1 d(1) reference page.
Shared Library Restrictions
When creating a shared library with | d, be aware of the following restrictions:

29

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

« Shared libraries must not be linked with archive libraries.
When creating a shared library, you can only depend on other shared
libraries for resolving external references. If you need to reference a
routine that currently resides in an archive library, either put that routine in
a separate shared library or include it in the shared library being created.
You can specify multiple object (. o) files when creating a shared library.
To put a routine in a separate shared library, obtain the source or object
file for that routine, recompile if necessary, and create a separate shared
library. You can specify an object file when recompiling with the i f ort
command or when creating the shared library with the | d command.
To include a routine in the shared library being created, put the routine
(source or object file) with other source files that make up the shared
library and recompile if necessary.
Then create the shared library, making sure that you specify the file
containing that routine either during recompilation or when creating the
shared library. You can specify an object file when recompiling with the
i fort command or when creating the shared library with the | d command.

« When creating shared libraries, all symbols must be defined (resolved).
Because all symbols must be defined to | d when you create a shared
library, you must specify the shared libraries on the | d command line,
including all standard Intel Fortran libraries (unless you use the -Qopt i on
command). The list of standard Intel Fortran libraries might be specified by
using the -1 stri ng option.

Installing Shared Libraries

Once the shared library is created, it must be installed for private or system-wide
use before you run a program that refers to it:

- To install a private shared library (when you are testing, for example), set
the environment variable LD LI BRARY_ PATH, as described in | d(1).

- To install a system-wide shared library, place the shared library file in one
of the standard directory paths used by | d. See | d(1).

Allocating Common Blocks

You can use the - dyncom (dynam ¢ common) option to control the
al l ocation of common bl ocks at run tine.

This option designates a common block to be dynamic. The space for its data is
allocated at run time rather than compile time. On entry to each routine
containing a declaration of the dynamic common block, a check is made of
whether space for the common block has been allocated. If the dynamic common
block is not yet allocated, space is allocated at the check time.

30

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

The following command-line example specifies the dynamic common option with
the names of the common blocks to be allocated dynamically at run time:

ifort -dyncom "Dbl k1, bl k2, bl k3" test.f

where bl k1, bl k2, and bl k3 are the names of the common blocks to be made
dynamic.

Guidelines for Using the -dyncom Option

The following are some limitations that you should be aware of when using the -
dyncomoption:

« An entity in a dynamic common cannot be initialized in a DATA statement.

« Only named common blocks can be designated as dynamic COMMON.

« An entity in a dynamic common block must not be used in an
EQUIVALENCE expression with an entity in a static common block or a
DATA-initialized variable.

Why Use a Dynamic Common Block?

A main reason for using dynamic common blocks is to enable you to control the
common block allocation by supplying your own allocation routine. To use your
own allocation routine, you should link it ahead of the Fortran run-time library.
This routine must be written in the C language to generate the correct routine
name.

The routine prototype is:
void FTN ALLOC(void **nem int *size, char *nane);
where

« nmemis the location of the base pointer of the common block which must be
set by the routine to point to the block of memory allocated.

+ si ze is the integer number of bytes of memory that the compiler has
determined are necessary to allocate for the common block as it was
declared in the program. You can ignore this value and use whatever
value is necessary for your purpose.

ﬂNote

You must return the size in bytes of the space you allocate. The library
routine that calls _FTN_ALLOC() ensures that all other occurrences of this

31

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

common block fit in the space you allocated. Return the size in bytes of the
space you allocate by modifying size.

« nane is the name of the common block being dynamically allocated.

Allocating Memory to Dynamic Common Blocks

The run-time library routine, f90_dyncom, performs memory allocation. The
compiler calls this routine at the beginning of each routine in a program that
contains a dynamic common block. In turn, this library routine calls
_FTN_ALLOC() to allocate memory. By default, the compiler passes the size in
bytes of the common block as declared in each routine to f90_dyncom, and then
onto FTN_ALLOC(). If you use the nonstandard extension having the common
block of the same name declared with different sizes in different routines, you
might get a run-time error depending on the order in which the routines
containing the common block declarations are invoked.

The Fortran run-time library contains a default version of FTN_ALLOC(), which
simply allocates the requested number of bytes and returns.

Compiler Options

Compiler Options Overview

See these topics:

Compiler Options Details

Compiler Directives Related to Options
Code Generation Options
Compatibility Options

Compilation Diagnostics Options

Data Options

External Procedures Options
Floating-Point Options

Language Options

32

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

Libraries Options
Miscellaneous Options
Optimization Options
Output Files Options

Preprocessor Options

Run-Time Options

Compiler Options Details

Options to the i f ort command affect how the compiler processes a file in
conjunction with the file name suffix. The simplest form of the i f ort command is
often sufficient.

Styles of Compiler Options

Some options consist of two words separated by a space, while others may have
words joined by an underscore (_). Most options can be abbreviated, usually to
four characters or more. For example, you can abbreviate - check

out put _conversi onto-check out.

Intel Fortran has four styles of compiler options:

« The phrase no precedes the option to disable it. This style was used in
Compag* Fortran. Example: | ogo and nol ogo

« A hyphen following the option disables it. This style was used in previous
Intel Fortran compilers. Example: - pr ef et ch and - pr ef et ch-

« Ano orno- inthe middle of the option disables it. Example: -fal i as
and -f no-al i as

« The option has an n parameter (specifying a number) and is disabled by
setting n equal to 0.

f}Note

If there are enabling and disabling versions of options on the command line,
or two versions of the same option, the last one takes precedence.

Using Multiple ifort Commands

33

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

If you compile parts of your program by using multiple i f ort commands, options
that affect the execution of the program should be used consistently for all
compilations, especially if data is shared or passed between procedures. For
example:

« The same data alignment needs to be used for data passed or shared by
module definition (such as user-defined structures) or common block. Use
the same version of the - al i gn option for all compilations.

« The program might contain INTEGER, LOGICAL, REAL, COMPLEX, or
DOUBLE PRECISION declarations without a kind parameter or size
specifier that is passed or shared by module definition or common block.
You must consistently use the options that control the size of such
numeric data declarations.

Using the OPTIONS Statement to Override
Options

You can override some options specified on the command line by using the
OPTIONS statement in your Fortran source program. The options specified by

the OPTIONS statement affect only the program unit where the statement
occurs.

Getting Help on Options

For help, enter - hel p on the command line, which displays brief information
about all the command-line options.

Compiler Directives Related to

Options

Some compiler directives and compiler options have the same effect, as shown
in the table below. However, compiler directives can be turned on and off
throughout a program, while compiler options remain in effect for the whole
compilation unless overridden by a compiler directive.

Compiler directives and equivalent command-line compiler options are:

Compiler Directive Equivalent Command-Line Compiler
Option

DECLARE -war n decl arations

NCDECLARE -war n nodecl arati ons

DEFI NE synbol - Dnane

34

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building

Applications
FI XEDFORMLI NESI ZE: opti on | -extend_source [opti on]
FREEFORM -free or -nofixed
NOFREEFORM -nofree or -fixed
| NTEGER: opti on -integer_size option
PACK: opti on -align [option]
REAL: opti on -real _size option
STRI CT -warn stderrors with -stand
NOSTRI CT -warn nostderrors

Note that the compiler directive names above are specified using the prefix
I DEC$ followed by a space. For example: ! DEC$ NOSTRI CT

FlNote

The prefix ! DEC$ is normally used. ! DEC$ works for both fixed-form and
free-form source. You can also use these alternative prefixes for fixed-form
source only: cDEC$, CDEC$,* DEC$, cDI R$, CDI R$, * DI R$, and ! M5$.

Code Generation Options

The code generation options let you specify how code should be generated.

Descriptions of Code Generation Options

-[no]recursive
Default: - nor ecur si ve

Compiles all procedures (functions and subroutines) for possible recursive
execution. When - r ecur si ve is specified, the - aut o option is also set.

-[no]reentrancy [keyword]
Default: -nor eent r ancy

Generates reentrant code that supports a multithreaded application. The
keywor d can be:

« none Same as -noreentrancy. Tellsthe Intel Fortran run-time
library (RTL) that the program will not be relying on threaded or
asynchronous reentrancy. Therefore, the RTL will not guard against such
interrupts inside its own critical regions.

35

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

- async
Tells the RTL that the program may contain asynchronous handlers that

could call the RTL. This causes the RTL to guard against asynchronous

interrupts inside its own critical regions.
« threaded

Tells the RTL that the program is multithreaded. This causes the RTL to
use thread locking to guard its own critical regions.

Specifying - t hr eads sets -reent rancy t hr eaded, since
multithreaded code must be reentrant.

Specifying - r eent r ancy is equivalent to specifying - r eent r ancy

t hr eaded.

-sox[-] (IA-32 systems only)
Default: - sox-
Enables saving of the compiler options and version in the executable.

This option has no effect in Itanium®-based systems.

Compatibility Options

The compatibility options let you specify how to make your source files and data
files compatible with older Fortran versions or other operating systems, such as
big endian unformatted data files, OpenVMS* systems run-time behavior, and
Microsoft* Fortran PowerStation.

See Also

Data Options

Language Options
Descriptions of Compatibility Options
-1

Default: Off

Alternate syntax: - onetrip

Specifies that the compiler should execute DO loops at least once. See also -
[no] f 66.

36

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

-assume [no]bscc

Default: - assune nobscc

Alternate syntax: - nbs is the same as - assune bscc

Tells the compiler to treat the backslash character (\) as a C-style control
(escape) character in character literals. The default, - assune nobscc
("assume no BackSlashControlCharacters"), tells the compiler to treat the
backslash character as a normal character instead of a control character in

character literals.

This option is useful when transferring programs from non-UNIX* environments,
such as OpenVMS*.

-convert
Default: None.

Specifies the format of unformatted files containing numeric data. Possible
values are:

« -convert big_endian
- -convert cray

« -convert ibm

« -convert little_endian
« -convert native

- -convert vaxg

« -convert vaxd

See Supported Native and Nonnative Numeric Formats.

-[no]f77rtl
Default: - nof 77rt |

Specifies the use of FORTRAN 77 run-time behavior. If you use the default value
(- nof 77r t 1), Intel Fortran run-time behavior is used.

Specifying this option controls control the following run-time behavior:
« When the unit is not connected to a file, some INQUIRE specifiers will
return different values:

NUMBER returns O
ACCESS returns 'UNKNOWN'

37

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

BLANK returns 'UNKNOWN'
FORM returns 'UNKNOWN'
+ List-directed input for character strings must be delimited by apostrophes
or quotation marks, or an error will result.
« When processing NAMELIST input:
Column 1 of each record is skipped

The '$' or '&' that appears prior to the group-name must appear in column
2 of the input record

-fpscomp all and -fpscomp none

Default: - f psconp 1i bs

Specifies that all the - f psconp options for compatibility with Microsoft* Fortran
PowerStation should be used. The default value specifies that the PowerStation

portability library should be passed to the linker.

- f psconp none specifies that no options for Fortran PowerStation compatibility
should be used.

-fpscomp [no]filesfromcmd

Default: -f psconp nofi | esfroncnd

Specifies Microsoft* Fortran PowerStation behavior when the OPEN statement
file specifier is blank. This option looks in the command-line arguments for

unspecified filenames on an OPEN(. . . FILE="", . . .) and prompts for flenames
at the terminal console.

-fpscomp [no]general
Default: -f psconp nogener al

Specifies that Microsoft* Fortran PowerStation semantics should be used where
differences exist between Intel Fortran and PowerStation.

-fpscomp [no]ioformat
Default: -f psconp noi of or mat

Specifies Microsoft* Fortran PowerStation semantic conventions and record
formats for list-directed formatted I/O and unformatted I/O.

-fpscomp [no]libs

38

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

Default: - f psconp 1i bs

Specifies that the PowerStation portability library should be passed to the linker.
-fpscomp [no]logicals

Default: -f psconp nol ogi cal s

Specifies that Microsoft* Fortran PowerStation representation of LOGICAL
values will be used.

-prof_format_32
Default: Off

Produces profile data with 32-bit counters. The default is to produce profile data
with 64-bit counters to handle large numbers of events.

This option allows compatibility with earlier compilers.
-vms
Default: Off

Causes the run-time system to behave like HP Fortran on OpenVMS Alpha
systems and VAX* systems (VAX FORTRAN?) in the following ways:

« Certain defaults
In the absence of other options, -vns sets the defaults as - check
format and - check out put _conver si on.

« Alignment
The - virs option does not affect the alignment of fields in records or items
in common blocks. Use - al i gn nor ecor ds to pack fields of records on
the next byte boundary for compatibility with HP Fortran on OpenVMS
systems.

- Carriage control default
If -vms -ccdefault default isspecified, carriage control defaults to
FORTRAN if the file is formatted and the unit is connected to a terminal.

« INCLUDE qualifiers
/LIST and /NOLIST are recognized at the end of the file name in an
INCLUDE statement at compile time.
If the file name in the INCLUDE statement does not specify the complete
path, the path used is the current directory.
Note that if - virs is not specified, the path used is the directory where the
file that contains the INCLUDE statement resides.

39

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

« Quotation mark character
A quotation mark (") character is recognized as starting an octal constant
("0..7) instead of a character literal ("...").

« Deleted records in relative files
When a record in a relative file is deleted, the first byte of that record is set
to a known character (currently ' @ '). Attempts to read that record later
result in ATTACCNON errors. The rest of the record (the whole record, if -
vs is not specified) is set to nulls for unformatted files and spaces for
formatted files.

« ENDFILE records
When an ENDFILE is performed on a sequential unit, an actual 1-byte
record containing a Ctrl/Z is written to the file. If - virs is not specified, an
internal ENDFILE flag is set and the file is truncated.
The - virs option does not affect ENDFILE on relative files: these files are
truncated.

« Implied logical unit numbers
The - virs option enables Intel Fortran to recognize certain environment
variables at run time for ACCEPT, PRINT, and TYPE statements and for
READ and WRITE statements that do not specify a unit number (such as
READ (*,1000)).

« Treatment of blanks in input
The - vins option causes the defaults for the keyword BLANK in OPEN
statements to become ' NULL ' for an explicit OPEN and ' ZERO ' for an
implicit OPEN of an external or internal file. For more information, see the
description of the OPEN statement.

« OPEN statement effects
Carriage control defaults to FORTRAN if the file is formatted, and the unit
is connected to a terminal (checked by means of isatty(3)). Otherwise,
carriage control defaults to LIST.
The - virs option affects the record length for direct access and relative
organization files. The buffer size is increased by 1 to accommodate the
deleted record character.

- Reading deleted records and ENDFILE records
The run-time direct access READ routine checks the first byte of the
retrieved record. If this byte is' @ ' or NULL ("\0"), then an ATTACCNON
error is returned.
The run-time sequential access READ routine checks to see if the record
it just read is one byte long and contains a Ctrl/Z. If this is true, it returns
EOF.

Compilation Diagnostics Options

The compilation diagnostics options let you specify the kinds of diagnostic
messages (warnings and errors) you want to receive.

40

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

Descriptions of Compilation Diagnostics Options

-e90 or -e95

Default: Off

Alternate syntax: - wWO0 or - w95

Issues errors for nonstandard Fortran 90 (- e90) or nonstandard Fortran 95 (-
€95). This option issues compile-time errors for language elements that are not
standard in the Fortran language that can be identified at compile time.00

See also - [no] st and.

-[no]error_limit n

Default: -error _|imt 30

Specifies the maximum number of error-level or fatal-level compiler errors
allowed for a given file before compilation aborts. If you specify -

noerror _|imt onthe command line, there is no limit on the number of errors

that are allowed. If the maximum number of errors is reached, a warning
message is issued and the next file (if any) on the command line is compiled.

-openmp_report{0|1]|2}

Default: Off. - opennp_report 1 is the default if - opennp_r eport is specified
without an argument.

Specifies the OpenMP parallelizer's diagnostic level, where n is:
« 0 No information
« 1 Loops, regions, and sections parallelized

« 2 Same as 1 plus master construct, single construct, and so forth

For more information, see "Parallelization with OpenMP* Overview" (and related
sections) in the User's Guide Volume IlI: Optimizing Applications.

-par_report{0|1]|2|3}

Default: Off. - par _report 1 isthe defaultif - par _report is specified without
an argument.

Specifies the autoparallelizer's diagnostic level, where n is:

41

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

« 0 No information

« 1 Loops successfully parallelized

« 2 Loops successfully and unsuccessfully parallelized
« 3 Same as 2plus dependency information

See also these topics in Volume II:

Auto-Parallelization Overview
Auto-Parallelization: Enabling, Options, Directives, and Environment Variables

-std, -std90, -std95
Default: Off ((no messages are issued)

Alternate syntax: - [no] st and or - w90 or - st and90 (for Fortran 90) or - w95
or - st and95 (for Fortran 95)

-std and - stand and - st d95 and - st and95 (which are equivalent) warn for
nonstandard Fortran 95. - st d90 and - st and90 (which are equivalent) warn for
nonstandard Fortran 90.

This option issues compile-time messages for language elements that are not
standard in the Fortran language that can be identified at compile time.

- w90 and - wo5 turn off warnings for nonstardard Fortran for Fortran 90 and
Fortran 95, respectively.

- st and is set if you specify -war n st derrors.
-vec_report{0|1]2|3|4|5} (IA-32 systems only)

Default: Off. - vec_report 1 isthe defaultif - vec_report is specified without
an argument.

Specifies the vectorizer's diagnostic level, where n is:

0 No information
1 Indicate vectorizer loops
2 Indicate vectorizer and nonvectorizer loops
« 3 Indicate vectorizer loops plus dependence information
4 Indicate nonvectorized loops
5 Indicate nonvectorized loops plus the reason why they were not
vectorized

42

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

For more information, see "Vectorization Overview" (and related sections) in the
User's Guide Volume II: Optimizing Applications.

-warn all or -warn none or -nowarn
Default: Custom (individually specified).
Specifies the compiler diagnostics level. Choices are:

« -warn all (show all diagnostics)
« -warn none (show no diagnostics)

Specifying -war n al | requests all possible warning messages, but does not set
-warn errors or-warn stderrors. To enable all the additional checking to
be performed and force the severity of the diagnostics to be severe enough to
not generate an object file, specify -warn all -warn errorsor-warn all
-warn stderrors.

Specifying -war n is the same as specifying -warn al | .

Specifying -nowar n is the same as specifying -war n none.

-warn [no]alignments

Default: -warn al i gnnent s

Issues warning messages for data that is not naturally aligned.

-warn [no]declarations

Default: - war n nodecl ar ati ons

Issues an error message for any undeclared symbols. This option makes the
default type of a variable undefined (IMPLICIT NONE) rather than using the
implicit Fortran rules. See also - u.

-warn [nojerrors

Default: -warn noerrors

Treats all warnings as errors by changing the severity of all warning diagnostics
into error diagnostics, including standards warnings.

-warn [no]general

43

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

Default: - war n gener al

Alternate syntax: - WL (to display all warnings) or - WD or - w (to suppress all
warnings)

Displays all informational-level and warning-level diagnostic messages from the
compiler.

Use - war n nogener al or - nowar n or - W) or - wto suppress all warnings.
-warn [nolignore_loc

Default: - war n noi gnore_| oc

Issues warning messages when %LOC is stripped from an argument.
-warn [no]stderrors

Default: - warn nostderrors

Treats warnings about Fortran standards violations as errors, not warnings.
Specifying - war n st derrors sets - stand f 95.

If you want to make Fortran 90 standards violations become errors, set this
option as well as - st and f 90.

-warn [no]truncated _source

Default: - war n not runcat ed_source

Issues warning messages when reading a source line with a statement field that
exceeds the maximum column width in fixed-format source files. The maximum

column width for fixed-format files is 72, 80, or 132, depending on the setting of

the - ext end_sour ce option. The -warn truncat ed_sour ce option has no
effect on truncation; lines that exceed the maximum column width are always

truncated. The -warn truncat ed_sour ce option does not apply to free-format
source files.

-warn [noJuncalled
Default: - war n uncal | ed

Issues warning messages when a statement function is never called.

44

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

-warn [noJunused

Default: - war n nounused

Issues warning messages for variables that are declared but never used.
-warn [nojJusage

Default: - war n usage

Alternate syntax: - cm (which is equivalent to - war n nousage)

Suppresses messages about questionable programming practices.
Questionable programming practices, although allowed, often are the result of
programming errors. For example, the default value, -war n usage, detects a

continued character or Hollerith literal whose first part ends before the statement
field ends and appears to end with trailing spaces.

Data Options

The data options let you specify rules for how your Fortran data is treated by the
compiler, optimizer, and code generator.

See Also

Compatibility Options
Language Options

Descriptions of Data Options
-[no]align
Default: - al i gn

Analyzes and reorders memory layout for variables and arrays. See also - al i gn
recnbyte.

-align none
Default: Off

Tells the compiler not to add padding bytes anywhere in common blocks or
structures.

45

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

-align [no]Jcommons or -align [no]Jdcommons

Default: - al i gn nocomons or - al i gn nodcomons

Aligns the data items of all common blocks on natural boundaries up to 4 bytes
(-al i gn comons) or 8 bytes (- al i gn dconmons) instead of the default byte

boundary by adding padding bytes.

If your command line includes the -st and option, then the compiler ignores -
al i gn dcommons.

-align recnbyte

Default: -al i gn rec8byte, -Zp8.-align rec8hbyte is the same as
specifying -al i gn records.

Alternate syntax: - Zp{ 1| 2| 4| 8| 16}

Specifies alignment constraint for structures on 1-, 2-, 4-, 8-, or 16-byte
boundaries.

Aligns fields of records and components of derived types on the smaller of the
size boundary specified (n can be 1, 2, 4, 8, or 16) or the boundary that will
naturally align them.

Specifying - al i gn recnbyt e does not affect whether common blocks are
naturally aligned or packed.

This option: Is the same as this option:

-Zp -align records or -align
rec8byte

- Zpl -al i gnnent norecords or -
align reclbyte

-Zp2 -align rec2byte

-Zp4 -align recdbyte

-align -Zp8 with -al i gn dcomons, -
align all, or -align
dconmons and -align records

-noal i gn -Zpl, -align none, or -align
nocommons and -align
nodcommons and -align
nor ecor ds

-align reclbyte -align norecords

-align rec8byte -align records

46

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

-align [no]records

Default: -al i gn records

Requests that components of derived types and fields of records be aligned on
natural boundaries up to 8 bytes (for derived types with the SEQUENCE
statement) by adding padding. See - al i gn seguence.

The - al i gn nor ecor ds option requests that components and fields be aligned
on arbitrary byte boundaries, instead of on natural boundaries up to 8 bytes, with
no padding.

-align [no]sequence

Default: - al i gn nosequence

Tells the compiler that components of derived types with the SEQUENCE
attribute will obey whatever alignment rules are currently in use. The default
alignment rules align unsequenced components on natural boundaries.

The default value of - al i gn nosequence means that components of derived
types with the SEQUENCE attribute will be packed, regardless of whatever

alignment rules are currently in use.

If your command line includes the -st and option, then the compiler ignores -
al i gn sequence.

-assume [no]byterecl
Default: - assune nobyt er ecl
Specifies the use of byte units for unformatted files. This option:
« Specifies that the units for an explicit OPEN statement RECL specifier
value are in bytes.
« Forces the record length value returned by an INQUIRE by output list to

be in byte units.

The default value, - assune nobyt er ecl , specifies that the units for RECL
values with unformatted files are in four-byte (longword) units.

-assume [no]Jdummy_aliases

Default: - assunme nodunmy_al i ases

47

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

Alternate syntax: - conmon_ar gs

Requires that the compiler assume that dummy (formal) arguments to
procedures share memory locations with other dummy arguments or with
variables shared through use association, host association, or common block
use.

You only need to compile the called subprogram with - assune
dumy_al i ases.

The program semantics involved with dummy aliasing do not strictly obey the
Fortran standard and they slow performance. Therefore, using the default value,
-assune nodunmy_al i ases, will give the compiler better run-time
performance. However, if a program depends on dummy aliasing and you do not
specify - assune dumry_al i ases, the run-time behavior of the program will
be unpredictable. In such programs, the results will depend on the exact
optimizations that are performed. In some cases, normal results will occur, but in
other cases, results will differ because the values used in computations involving
the offending aliases will differ.

For more information, see the information about the dummy aliasing assumption
in the User's Guide Volume II: Optimizing Applications.

-assume [no]protect_constants

Default: - assune protect _constants

Specifies that constants are read-only.

The - assune nopr ot ect _const ant s option tells the compiler to pass a copy
of a constant actual argument. As a result, the called routine can modify this
copy, even though the Fortran standard prohibits such modification. The calling

routine does not modify the constant.

The default, - assune pr ot ect _const ant s, results in passing of a constant
actual argument. Any attempt to modify it may result in an error.

-auto_scalar, -auto, and -save

Default: - aut o_scal ar (unless - recur si ve or - opennp is specified, in which
case the default is - aut 0)

Alternate syntax for - aut o: - aut omat i ¢ and - nosave
Alternate syntax for - save: - noaut o and - noaut omati c

Specifies where local variables are stored, if default local storage is not desired.

48

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

-aut o_scal ar causes allocation of scalar variables of intrinsic types INTEGER,
REAL, COMPLEX, and LOGICAL to the stack.

- aut o_scal ar does not affect variables that appear in EQUIVALENCE or
SAVE statements, or those that are in common blocks. - aut o_scal ar may
provide a performance gain for your program, but if your program depends on
variables having the same value as the last time the routine was invoked, your
program may not function properly. Variables that need to retain their values
across subroutine calls should appear in a SAVE statement.

- aut o makes all local variables AUTOMATIC, causing all variables to be
allocated on the stack, rather than in local static storage. It does not affect
variables that have the SAVE attribute or appear in an EQUIVALENCE statement
or in a common block.

- save saves all variables in static allocation except local variables within a
recursive routine.

- aut o might provide a performance gain for your program, but if your program

depends on variables having the same value as the last time the routine was
invoked, your program might not function properly.

-double_size {64|128}
Default: - doubl e_si ze 64

Defines DOUBLE PRECISION and DOUBLE COMPLEX declarations, constants,
functions, and intrinsics.

-doubl e_si ze 64 defines DOUBLE PRECISION declarations, constants,
functions, and intrinsics as REAL*8 and defines DOUBLE COMPLEX
declarations, functions, and intrinsics as COMPLEX*16.

-doubl e_si ze 128 defines DOUBLE PRECISION declarations, constants,

functions, and intrinsics as REAL*16 and (for Fortran 90 and 95) defines
DOUBLE COMPLEX declarations, functions, and intrinsics as COMPLEX*32.

-dyncom "blk1,blk2,..."
Enables dynamic allocation of the specified common blocks at run time.

Example: For common blocks A, B, and C, use this syntax:

-dyncom "a, b, c"

49

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

-integer_size {16|32|64}
Default: -i nt eger _si ze 32

Alternate syntax: -i { 2| 4| 8}, where 2, 4, and 8 stand for the KIND of integer
and logical variables

Specifies the default size (in bits) of integer and logical declarations, constants,
functions, and intrinsics, where n is 16, 32, or 64:

+ nis 16: Makes the default integer and logical variables 2 bytes long.
INTEGER and LOGICAL declarations are treated as (KIND=2). Alternate
syntax: - i 2. See also INTEGER(KIND=2) Representation.

« nis 32: Makes the default integer and logical variables 4 bytes long.
INTEGER and LOGICAL declarations are treated as (KIND=4). Alternate
syntax: - i 4. See also INTEGER(KIND=4) Representation.

+ nis 64: Makes the default integer and logical variables 8 bytes long.
INTEGER and LOGICAL declarations are treated as (KIND=8). Alternate
syntax: - i 8. See also INTEGER(KIND=8) Representation.

-Pg

Default: Off.

Compiles and links for function profiling with gpr of (1) .
This is the same as specifying - p or - gp.

-real_size {32|64|128}

Default: -real _si ze 32

Alternate syntax: - r{ 8| 16}, where 8 and 16 stand for the KIND of real
variables.

Specifies the default size (in bits) of real and complex declarations, constants,
functions, and intrinsics, where n is 32, 64, or 128:

« nis 32: Defines REAL declarations, constants, functions, and intrinsics as
REAL(KIND=4) (SINGLE PRECISION) and defines COMPLEX
declarations, constants, functions, and intrinsics as COMPLEX(KIND=4)
(COMPLEX).

Alternate syntax: None.

See Also

REAL(KIND=4) (REAL) Representation
COMPLEX(KIND=4) (COMPLEX) Representation

50

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

« nis 64: Defines REAL declarations, constants, functions, and intrinsics as
REAL(KIND=8) (DOUBLE PRECISION) and defines COMPLEX
declarations, constants, functions, and intrinsics as COMPLEX(KIND=8)
(DOUBLE COMPLEX).

Specifying - r eal _si ze 64 causes intrinsic functions to produce a
REAL(KIND=8) or COMPLEX(KIND=8) result instead of a REAL(KIND=4)
or COMPLEX(KIND=4) result, unless the argument is explicitly typed as
REAL(KIND=4) or COMPLEX(KIND=4), including CMPLX, FLOAT, REAL,
SNGL, and AIMAG. For instance, references to the CMPLX intrinsic
produce DCMPLX results (COMPLEX(KIND=8)), unless the argument to
CMPLX is explicitly typed as REAL(KIND=4), REAL*4,
COMPLEX(KIND=4), or COMPLEX*8. In this case the resulting data type
is COMPLEX(KIND=4).

Alternate syntax: -r 8 or - aut odoubl e

See Also

REAL(KIND=8) (DOUBLE PRECISION) Representation
COMPLEX(KIND=8) (DOUBLE COMPLEX) Representation

« nis 128: Defines REAL declarations, constants, functions, and intrinsics
as REAL(KIND=16) and defines COMPLEX declarations, constants,
functions, and intrinsics as COMPLEX(KIND=16).

Alternate syntax: -r 16

See Also

REAL(KIND=16) Representation
COMPLEX(KIND=16) Representation

-safe_cray_ptr
Default: Off (assume that Cray pointers do alias other variables)

Requires that the compiler assume that Cray pointers do not alias (that is, do not
specify sharing memory between) other variables.

Consider the following example:

poi nter (pb, b)
pb = getstorage()
doi =1, n

b(i) =a(i) + 1
enddo

By default, the compiler assumes that b and a are aliased. To prevent such an

assumption, specify the - saf e_cray_pt r option, and the compiler will treat
b(i) and a(i) asindependent of each other.

51

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

However, if the variables are intended to be aliased with Cray pointers, using the
-saf e_cray_ptr option produces incorrect results. For the code example
below, - saf e_cray_ptr should not be used:
poi nter (pb, b)
pb = loc(a(2))

do i=1, n

b(i) = a(i) +1
enddo

-zero[-]
Default: Off (- zer 0-)

Initializes to zero all local scalar variables of intrinsic type INTEGER, REAL,
COMPLEX, or LOGICAL that are saved and not already initialized.

For this option to be effective, you must use - save on the command line or have
variables in your code specifically marked as SAVE.

External Procedures Options

The external procedures options let you specify how external procedures are
called.

Descriptions of External Procedures Options

-assume [nojunderscore

Default: - assunme nounder scor e

Alternate syntax: - nus[, fil enane]

Appends an underscore character to external user-defined names: the main
program name, named COMMON, BLOCK DATA, global data names in
MODULEs, and names implicitly or explicitly declared EXTERNAL. The name of

blank COMMON remains _BLNK _, and Fortran intrinsic names are not affected.

If you want to specify a particular filename in which you don't want to append an
underscore, use - nus, fi | enane.

-[no]mixed_str_len_arg
Default: -nom xed_str _len_arg

52

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

Tells the compiler that the hidden length passed for a character argument is to be
placed immediately after its corresponding character argument in the argument
list.

The default value places the hidden lengths in sequential order at the end of the
argument list. When porting mixed-language programs that pass character
arguments, either this option must be specified correctly or the order of hidden
length arguments changed in the source code.

See also Programming with Mixed Languages Overview and related sections.

-names keyword
Default: - nanes | ower case

Controls how the case sensitivity of letters in source code identifiers and external
names is handled. This naming convention applies whether names are being
defined or referenced. This option is useful in mixed-language programming.

keywor d is one of the following:

« uppercase: Causes the compilerto ignore case differences in
identifiers and to convert external names touppercase. Alternate syntax: -
upper case

« | owercase: Causes the compiler to ignore case differences in
identifiers and to convert external names to lowercase. Alternate syntax: -
| ower case

« as_is: Causes the compiler to distinguish case differences in identifiers
and to preserve the case of external names.

Instead of using this option, consider using the ALIAS directive for the specific
name needed.

Floating-Point Options

The floating-point options let you specify how you want floating-point data to be
treated.

See also Optimization Options.

Descriptions of Floating-Point Options

-assume [no]minusO

53

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

Default: - assune nom nusO

Tells the compiler to use Fortran 95 standard semantics for the treatment of the
IEEE* floating-point value -0.0 in the SIGN intrinsic, if the processor is capable of
distinguishing the difference between -0.0 and +0.0, and to write a value of -0.0
with a negative sign on formatted output.

The default, - assune nom nusO, tells the compiler to use Fortran 90/77

standard semantics in the SIGN intrinsic, to treat -0.0 and +0.0 as 0.0, and to
write a value of -0.0 with no sign on formatted output.

-[no]fltconsistency

Default: - nof | t consi st ency

Alternate syntax: - np

Enables improved floating-point consistency during calculations.

This option limits floating-point optimizations and maintains declared precision.
Floating-point operations are not reordered and the result of each floating-point
operation is stored into the target variable rather than being kept in the floating-
point processor for use in a subsequent calculation.

For example, the compiler can change floating-point division computations into
multiplication by the reciprocal of the denominator. This change can alter the

results of floating-point division computations slightly.

The default value, - nof | t consi st ency, provides better accuracy and run-time
performance at the expense of less consistent floating-point results.

This option might slightly reduce execution speed.

See also "Improving/Restricting FP Arithmetic Precision” in Volume II: Optimizing
Applications.

-fp_port (IA-32 systems only)
Default: Off
Rounds floating-point results after floating-point operations, so rounding to user-

declared precision happens at assignments and type conversions; this has some
impact on speed.

54

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

The default is to keep results of floating-point operations in higher precision; this
provides better performance but less consistent floating-point results.

See also "Floating-Point Arithmetic Precision for IA-32 Systems" in Volume II:
Optimizing Applications.

-[no]fpconstant
Default: - nof pconst ant

Requests that a single-precision constant assigned to a double-precision variable
be evaluated in double precision instead of single precision.

The Fortran standard requires that the constant be evaluated in single precision.
Certain programs created for FORTRAN-77 compilers may show different
floating-point results, because they rely on single-precision constants assigned to
a double-precision variable to be evaluated in double precision.

In the following example, if you specify / f pconst ant , identical values are
assigned to D1 and D2. If you omit / f pconst ant , the compiler will obey the
standard and assign a less precise value to D1.:

REAL (KIND=8) D1, D2

DATA D1 /2.71828182846182/ I REAL (KIND=4) val ue expanded
to doubl e

DATA D2 /2.71828182846182D0/ ! Doubl e val ue assigned to
doubl e

-fpen
Default: - f pe3

Specifies floating-point exception handling at run time for the main program. This
includes whether exceptional floating-point values are allowed and how precisely
run-time exceptions are reported. This option controls how the following
exceptions are handled:

« When floating-point calculations result in a divide by zero, overflow, or
invalid operation.

« When floating-point calculations result in an underflow.

« When a denormalized number or other exceptional number (positive
infinity, negative infinity, or a NaN) is present in an arithmetic expression.

You can choose the following:

« -fpe0 specifies: underflow gives 0.0; abort on other IEEE exceptions

55

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

- - fpe3 specifies: produce NaN, signed infinities, and denormal results
On IA-32 systems, using - f pe0 will slow run-time performance.
Many programs do not need to handle denormalized numbers or other

exceptional values. On Itanium®-based systems, using - f pe3 will slow run-time
performance.

-fpstkchk (1A-32 systems only)
Default: Off

Generates extra code after every function call to ensure that the floating-point
(FP)stack is in the expected state.

By default, there is no checking. So when the FP stack overflows, a NaN value is
put into FP calculations, and the program's results differ. Unfortunately, the
overflow point can be far away from the point of the actual bug. The - f pst kchk

option places code that would access-violate immediately after an incorrect call
occurred, thus making it easier to locate these issues.

-fr32 (Itanium®-based systems only)

Default: Off

Specifies that the use of high floating-point registers should be disabled.
-ftz[-]

Default: Off (- f t z-) on 1A-32 systems; off (- f t z-) on Itanium-based systems,
except for optimization level - O3, in which case the default is on (- f t z)

Enables flush denormal results to zero. This option has effect only when
compiling the main program.

-IPF_flt_eval _methodO (Itanium®-based systems only)

Default: Off

Directs the compiler to evaluate the expressions involving floating-point operands
in the precision indicated by the variable types declared in the program. By

default, intermediate floating-point expressions are maintained in higher
precision.

56

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

See also "Floating-Point Arithmetic Options for Itanium-Based Systems" in
Volume II: Optimizing Applications.

-IPF_fltacc[-] (Itanium®-based systems only)
Default: Off
Disables optimizations that affect floating-point accuracy.

If the default setting is used (-1 PF_f | t acc-), the compiler might apply
optimizations that reduce floating-point accuracy.

Youcanuse -1 PF_fltaccor-fltconsistency toimprove floating-point
accuracy, but at the cost of disabling some optimizations.

See also "Floating-Point Arithmetic Options for Itanium-Based Systems" in
Volume II: Optimizing Applications.

-IPF_fmal-] (Itanium®-based systems only)
Default: Off

Enables the combining of floating-point multiply and add/subtract operations into
a single operation.

-IPF_fp_speculationmode (Itanium®-based systems only)

Default: - 1 PF_f p_specul ati onf ast

Enables floating-point operations in one of the following modes:
+ fast Speculate on floating-point operations
+ safe Speculate on floating-point operations only when it is safe
« strict Disables speculation on floating-point operations.

. off Same as strict.

See also "Floating-Point Arithmetic Options for Itanium-Based Systems" in
Volume II: Optimizing Applications.

-mpl
Default: Off

Restricts floating-point precision to be closer to declared precision. This option
has some impact on speed, but less than the impact of - np.

57

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

-pc{32|64|80} (IA-32 systems only)

Default: - pc64

Enables floating-point significand precision control. Possible values are:
+ -pc32 Setsinternal FPU precision to 24-bit significand

+ -pc64 Sets internal FPU precision to 53-bit significand
« -pc80 Sets internal FPU precision to 64-bit significand

Language Options

The language options let you specify semantics, syntax, and source file format.
See Also
Compatibility Options

Data Options

Descriptions of Language Options

-[no]altparam

Default: - al t par am (alternate syntax is allowed)

Alternate syntax: - [no] dps

Allows alternate syntax (without parentheses) for PARAMETER statements.
The alternate syntax for PARAMETER statements is:

PARAMETER par 1=expl [, par2=exp2]

This form does not have parentheses around the assignment of the constant to
the parameter name. With this form, the type of the parameter is determined by
the type of the expression being assigned to it and not by any implicit typing.
-[no]d_lines

Default: - nod_Ii nes

Alternate syntax: - DD

58

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

Specifies that lines in fixed-format files that contain a D in column 1 should be
treated as source code, not comment lines.

-[nolextend_source [size]

Default: -noext end_sour ce, which implies 72 characters; if -ext end_sour ce
is specified without a si ze, the default becomes - ext end_source: 132

Alternate syntax: - {72| 80| 132}

Specifies the column number used to end the statement field in fixed-form source
files: 72, 80, or 132. When a size is specified, that will be the last column parsed
as part of the statement field. Any columns after that will be treated as
comments.

This option is valid only for fixed-form files, and it enables the - f i xed option.
-[no]f66
Default: - nof 66 (use current Fortran standards semantics)

Alternate syntax: - 66
Specifies that the compiler should select FORTRAN-66 interpretations in cases
of incompatibility. Differences include the following:

« DO loops are always executed at least once

+ FORTRAN-66 EXTERNAL statement syntax and semantics are allowed

+ If the OPEN statement STATUS specifier is omitted, the default changes
to STATUS='NEW' instead of STATUS="UNKNOWN'

+ If the OPEN statement BLANK specifier is omitted, the default changes to
BLANK="ZEROQO' instead of BLANK='NULL"

-[no]free or -[no]fixed
Default: File extension is used to determine format.
Alternate syntax: - FRis equivalent to - fr ee; - FI is equivalentto - f i xed.

Specifies the format of the Fortran source code. If this option is not specifed, the
file extension determines the format:

« Files with an extension of . f 90, . F90, or . i 90 are free-format source
files.

« Files with an extensionof . f,.for,. FOR, .ftn, or.i are fixed-format
files.

59

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

-openmp or -openmp_stubs
Default: Off (disabled)
Specifies that OpenMP* directives should be processed. Options are:
« -opennp Generate parallel code. If you use this option,
multithreaded libraries are used, but fpp is not automatically invoked.
When - opennp is specified, the - aut o option is al so set.

- -opennp_stubs Generate sequential code. The OpenMP directives are
ignored and a stub OpenMP library is linked.

-[no]pad_source

Default: - nopad_sour ce

Specifies that fixed-form source lines shorter than the statement field width are to
be padded with spaces to the end of the statement field. This affects the
interpretation of character and Hollerith literals that are continued across source
records.

The default value, - nopad_sour ce, causes a warning message to be displayed
if a character or Hollerith literal that ends before the statement field ends is
continued onto the next source record. To suppress this warning message,
specify the - war n nousage option.

Specifying - pad_sour ce can prevent warning messages associated with - war n
usage.

Libraries Options

The libraries options let you specify libraries for your application.

Descriptions of Libraries Options
-no_cpprt

Default: - cxxl i b-i cc (use Intel C++ libraries)
Specifies that C++ run-time libraries should not be linked.

This option exists for GNU compatibility reasons, to disable the use of the cpp
run-time libraries during link. Thereisno - cpprt or-yes_cpprt option.

60

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

-nodefaultlibs
Default: Off (include default libraries)
Specifies that standard libraries should be used when linking.

This option exists for GNU compatibility reasons. There is no - def aul t1i bs
option.

See also - nostdl i b.

-i_dynamic

Default: Off

Instructs the linker to link Intel-provided libraries dynamically.

-Ldir

Default: Off

Instructs the linker to search di r for libraries.

-[no]threads

Default: - not hr eads

Specifies whether or not multithreaded libraries should be linked against.

If you specify - t hr eads, this sets the -r eent r ancy t hr eaded option.
-nostdlib

Default: Off.

Specifies that standard libraries and startup files should be used when linking.
This option exists for GNU compatibility reasons. There is no - st dl i b option.
-shared

Default: Off

Specifies that the compiler should build a dynamic shared object (DSO) instead
of an executable.

61

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

See also Creating Shared Libraries.

-shared-libcxa

Links the Intel-provided | i bcxa C++ library dynamically.

By default, the | i bcxa library is linked dynamically. (All C++-related libraries
supplied by Intel are linked in dynamically by default.) This option is useful when
you are using the - st at i ¢ option and you want to override the effect of the -

st ati c option for the | i bcxa library.

This option has the opposite effect of - st ati c-1i bcxa.

-static-libcxa

Links the Intel-provided | i bcxa C++ library statically.

By default, the | i bcxa library is linked dynamically. (All C++-related libraries
supplied by Intel are linked in dynamically by default.) Use this option to link

I i bcxa statically, while still allowing the standard libraries to be linked in by the
default behavior.

See also - shar ed- | i bcxa option.

-static

Default: Off.

Alternative syntax: - non_shar ed

Prevents linking with shared libraries (. so files).

Miscellaneous Options

These options are described in alphabetical order.
-ansi_alias[-]
Default: - ansi _al i as

Enables the compiler to assume that the program adheres to the Fortran 95
Standard type aliasability rules.

62

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

For example, an object of type real cannot be accessed as an integer. For
complete information on the rules for data types and data type constants, see
"Data Types, Constants, and Variables" in the Language Reference.

The option directs the compiler to assume the following:

« Arrays are not accessed out of arrays' bounds.

« Pointers are not cast to non-pointer types and vice-versa.

+ References to objects of two different scalar types cannot alias. For
example, an object of type integer cannot alias with an object of type real
or an object of type real cannot alias with an object of type double
precision.

If your program satisfies the above conditions, setting the - ansi _al i as option
will help the compiler optimize the program. However, if your program might not

satisfy any of the above conditions, you must disable this option with -
ansi _al i as-, as it might cause the compiler to generate incorrect code.

-assume cc_omp

Default: depends on whether - opennp is specified

Enables conditional compilation as defined by the OpenMP Fortran APIl. When

"1 $space" appears in free-form source or " ! $spaces" appears in column 1 of

fixed-form source, the rest of the line is accepted as a Fortran line.

If - opennp is specified, the default is - assunme cc_onp; otherwise, the default
IS-assunme nocc_onp.

-assume none

Turns off all the - assume options.

-nobss_init

Default: Off

Disables placement of zero-initialized variables in the BSS section.

By default, variables explicitly initialized with zeros are placed in the BSS section.
By using this option, you can place any variables that are explicitly initialized with

zeros in the DATA section if required.

There is no - bss_i ni t option.

63

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

-ccdefault keyword
Default: - ccdef aul t def aul t
Specifies the type of carriage control used for units 6 and *.
The choices for keywor d are:
« default Specifies that the compiler is to use the default carriage-
control setting. This choice can be affected by the - vins option:
If -vims -ccdefault default isspecified, carriage control defaults to

f ortran if the file is formatted, and the unit is connected to a terminal.
If - novns -ccdefault default is specified, carriage control defaults

tolist.
- fortran Specifies normal Fortran interpretation of the first character.
« list Specifies one line feed between records.
+ none Specifies no carriage-control processing.
-dryrun
Default: Off

Specifies that driver tool commands should be shown but not executed. See also
- V.

-dynamic-linkerfile

Default: Off

Specifies a dynamic linker (f i |) instead of the default.

-fpic or -fPIC

Default: Off

Specifies that position-independent code should be generated.

Specifies full symbol preemption. Global symbol definitions as well as global
symbol references get default (that is, preemptable) visibility unless explicitly

specified otherwise.

See also Creating Shared Libraries.

-fvisibility=keyword and -fv isibility-keyword=file

64

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

Specifies the default visibility for global symbols (- f vi si bi | i t y=keywor d) or
specifies the visibility for symbols that are in afile (-fvisibility-
keywor d=fi | e). (This second form overrides the first form).

The keywor d specifies what the visibility is set to. Visibility can be set to any of
the following:

« defaul t - Other components can reference the symbol, and the symbol
definition can be overridden (preempted) by a definition of the same name
in another component.

- extern -The symbolis treated as though it is defined in another
component. It also means that the symbol can be overridden by a
definition of the same name in another component.

« hi dden - Other components cannot directly reference the symbol.
However, its address might be passed to other components indirectly.

« internal - The symbol cannot be referenced outside its defining
component, either directly or indirectly.

« protect ed - Other components can reference the symbol, but it cannot
be overridden by a definition of the same name in another component.

The fi | e is the pathname of a file containing the list of symbols whose visibility

you want to set. The symbols are separated by whitespace (spaces, tabs, or
newlines).

-0
Default: Off

Generates symbolic debugging information and line numbers in the object file for
use by debuggers.

-help

Displays brief information about all the command-line options.
-inline_debug_info

Default: Off

Keeps the source position of inline code instead of assigning the call-site source
position to inlined code.

-[no]logo
Default: - | ogo (startup banner is displayed)

65

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

Displays the startup banner.
This option can be placed anywhere on the command line.
The startup banner displays the following information:

« | D: unique identification number for the compiler

« X.Y. z:version of the compiler
- year s: years for which the software is copyrighted

-nofor_main

Default: Off

Specifies that the main program is not written in Fortran. For example, if the main
program is written in C and calls an Intel Fortran subprogram, specify -

nof or _mai n when compiling the program with the i f ort command. Specifying
- nof or _mai n prevents linking f or _mai n. o into programs. This is a link-time
switch.

If you omit - nof or _mai n, the main program must be a Fortran program.

-noinclude
Default: Off

Prevents the compiler from searching in / usr /i ncl ude for files specified in an
INCLUDE statement.

You can specify the - 1 di r option along with this option. This option does not

affect cpp(1) behavior, and is not related to the Fortran 95 and 90 USE
statement.

-[no]pad

Default: - nopad

Enables the changing of the variable and array memory layout.

The - pad option is effectively not different from - al i gn when applied to

structures and derived types. However, the scope of - pad is greater because it
applies also to common blocks, derived types, sequence types, and structures.

-prec_div (IA-32 systems only)

66

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

Default: Off

Enables improved precision of floating-point divides. Has a slight impact on
speed.

-rcd (IA-32 systems only)
Default: Off

Enables changing of rounding mode for float-to-integer conversions, resulting in
faster float-to-integer conversions.

-size_Ip64 (Itanium®-based systems only)

Default: Off

Specifies that 64-bit size for long and pointer types should be assumed.
-[no]stack_temps

Default: Off

Specifies that arrays might be allocated on the stack, where possible, by the
compiler.

-nostartfiles

Default: Off

Specifies that standard startup files should be used when linking.
Thereisno-startfil es option.

-syntax_only

Default: Off

Alternate syntax: -y and - synt ax

Requests that only the syntax of the source file be checked. Code generation is
suppressed.

-T file

Default: Off
67

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

Instructs the linker to read link commands fromfi | e.

-Tf file

Default: Off

Specifies that f i | enanme should be compiled as a Fortran source file. This option

is used when you have a Fortran file with a nonstandard file extension (that is,
not one of . F, . FOR, or . F90).

-u
Default: Off
Alternate syntax: - i npl i ci t none

Specifies that the IMPLICIT NONE should be set by default. See also - war n
[no] decl arati ons.

-V
Default: Off

Specifies that driver tool commands should be shown and executed. See also -
dryrun.

-V

Default: None.

Displays the compiler version information.

-what

Default: Off

Prints the version strings of the Fortran command and the compiler.
-WIl,option1[,option2,...]

Default: Off

Passes options (specified by opt i onl, opt i on2, and so forth) to the linker for
processing.

68

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

-X

Default: Off

Alternate syntax: - nost di nc

Removes standard directories from the include file search. This option prevents
the compiler from searching the default path specified by the FPATH environment
variable.

-Xlinker value

Default: Off

Passes val ue directly to the linker for processing.

Optimization Options

The optimization options let you specify how to optimize your applications for
speed, particular processors, code size, and so forth.

For more information about optimization, see "Compiler Optimizations Overview"
and related sections in the Intel Fortran User's Guide for Linux Volume II:
Optimizing Applications.

See also Floating-Point Options.

Descriptions of Optimization Options

-assume [no]buffered_io
Default: - assunme nobuf fered_i o (bufferis flushed as each record is written)

Specifies whether records are written (flushed) to disk as each is written or are
accumulated in the buffer. If you specify -assune buf f er ed_i o, records
accumulate in the buffer.

For disk devices, - assune buf f er ed_i o (or the equivalent OPEN statement
BUFFERED="YES' specifier or the FORT_BUFFERED run-time environment
variable) requests that the internal buffer will be filled, possibly by many record
output statements (WRITE), before it is written to disk by the Fortran run-time
system. If a file is opened for direct access, I/O buffering will be ignored.

69

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

Using buffered writes usually makes disk I/0O more efficient by writing larger
blocks of data to the disk less often. However, if you request buffered writes,
records not yet written to disk may be lost in the event of a system failure.

Unless you set the FORT_BUFFERED environment variable to true, the default is
BUFFERED='NO' and - assune nobuf fered_i o for all I/O, in which case the
Fortran run-time system empties its internal buffer for each WRITE (or similar
record output statements).

The OPEN statement BUFFERED specifier applies to a specific logical unit. In
contrast, the - assune [no] buf f er ed_i o option and the FORT_BUFFERED
environment variable apply to all Fortran units.

-auto_ilp32 (Itanium-based systems only)
Default: Off

Allows the compiler to use 32-bit pointers whenever possible as long as the
application does not exceed a 32-bit address space.

Because this optimization requires interprocedural analysis over the whole
program, you must use this option with the - i po opti on.

Using this option on programs that exceed 32-bit address space may cause
unpredictable results during program execution.

-ax{K|W|N|B|P} (IA-32 systems only)
Default: None.

Directs the compiler to find opportunities to generate separate versions of
functions that take advantage of features that are specific to the specified Intel®
processor.

If the compiler finds such an opportunity, it first checks whether generating a
processor-specific version of a function is likely to result in a performance gain. If
this is the case, the compiler generates both a processor-specific version of a
function and a generic version of the function. The generic version will run on any
IA-32 processor.

At run time, one of the versions is chosen to execute, depending on the Intel
processor in use. In this way, the program can benefit from performance gains on
more advanced Intel processors, while still working properly on older IA-32
processors.

70

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

Possible values and the processors the code is optimized for are:

« -axK Intel Pentium® Il and compatible Intel processors

« -axW Intel Pentium 4 and compatible Intel processors

- axN Intel Pentium 4 and compatible Intel processors

« -axB Intel Pentium M and compatible Intel processors

+ -axP Intel® Pentium® 4 processors with Streaming SIMD Extensions 3
(SSE3) instruction support

-complex_limited_range][-]

Default: Off (- conpl ex_|imted _range-)

Enables the use of basic algebraic expansions of some arithmetic operations
involving data of type COMPLEX. This can result in performance improvements

in programs that use a lot of COMPLEX arithmetic. However, values at the
extremes of the exponent range might not compute correctly.

-f[no-]Jalias

Default: - f al i as

Specifies that aliasing should be assumed in the program.
Seealso-f[no-]fnalias.

-f[no-]fnalias

Default: - ff nal i as

Specifies that aliasing should be assumed within functions. The - f no-f nal i as
option specifies that aliasiing should not be assumed within functions, but should
be assumed across calls.

Seealso-f[no-]alias.

-fast

Default: Off

Provides a shortcut method to enable several optimizations for run-time
performance.

The - f ast option sets the following options to improve performance:

71

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

+ -8 (optimizes for maximum speed and high-level optimizations)
« -i po (enables interprocedural optimizations across files)
- -static (prevents linking with shared libraries)

To get the best possible performance, you might need to use the option in
conjunction with an architecture-specific option such as - xN.

To override one of the options set by - f ast , specify that option after the - f ast
option on the command line.

f:)] Note

The several options set by the - f ast option might change from release to
release.

-fnsplit[-] (Itanium®-based systems only)
Default: Off

Enables function splitting if - pr of _use. is also enabled. (This option has no
effect if - pr of _use. is not enabled.)

This option is automatically enabled if you use - pr of _use.

To turn off function splitting, use - f nspl i t - . (However, function grouping will
continue to be enabled.)

See also these topics in Volume II:

Basic PGO Options
Example of Profile-Guided Optimization

-fp (IA-32 systems only)

Default: On

Disables the use of ebp as a general-purpose register.

Most debuggers expect ebp to be used as a stack frame pointer, and cannot
produce a stack backtrace unless this is so. This option allows frame pointers

and disables the use of the ebp register in optimizations and lets the debugger
produce a stack backtrace.

-gp
Default: Off
72

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

Alternate syntax: - p

Compile and link for function profiling with the gpr of tool.

_|p

Default: Off

Enables single-file interprocedural optimizations.

Enhances inline function expansion.

See also this topic in Volume II: "Using -ip with -option Specifiers."
-ip_no _inlining

Default: Off

Disables interprocedural inlining that results from the -i p or - i po
interprocedural optimizations, but has no effect on other interprocedural
optimizations. Requires -i p or -i po.

-ip_no_pinlining (1A-32 systems only)

Default: Off

Disables partial inlining. Requires -i p or - i po.

-ipo

Default: Off

Enables Whole Program Optimization (WPO), which is the same as multifile
interprocedural optimization, or multifile IPO. All objects over the entire program
are compiled.

See also these topics in Volume II:

Multifile IPO Overview

Creating a Multifile IPO Executable with xilink

Using -Qip with -Qoption Specifiers

-ipo_c

Default: Off

73

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

Optimizes across files and produces a multifile object file. Stops prior to the final
link stage, leaving an optimized object file.

See also this topic in Volume II: "Analyzing the Effects of Multifile IPO."
-ipo_obj
Default: Off

Forces the generation of real object files. Requires - i po. See also this topic in
Volume IlI: "Compilation with Real Object Files."

-ipo_S

Default: Off

Optimizes across files and produces a multifile assembly file. Performs the same
optimizations as - i po, but stops prior to the final link stage, leaving an optimized

assembly file. The default listing name isi po_out . s.

See also this topic in Volume II: "Analyzing the Effects of Multifile IPO."
-ivdep_parallel (Itanium®-based systems only)

Default: Off

Specifies that there is no loop-carried memory dependency in the loop where an

IVDEP directive is specified. This technique is useful for some sparse matrix
applications.

See also this topic in Volume Il: "Memory Dependency with the IVDEP Directive."
-nolib_inline

Default: On

Disables inline expansion of intrinsic functions.

-On

Default: - G2 unless you specify - debug, in which case the defaultis - Q0

Specifies the code optimization for application types. Possible values are:

74

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

-0

Disables all optimizations.

This is the default if you specify - debug (with no keyword).

Specifying this option causes certain - war n options to be ignored.

-01

Alternate syntax on I1A-32 systems: -2 or -O

Maximize speed; disables some optimizations that increase code size for
a small speed benefit. This option enables global optimization. This
includes data-flow analysis, code motion, strength reduction and test
replacement, split-lifetime analysis, and instruction scheduling. Specifying
- @2 includes the optimizations performed by - O1.

Note that, on 1A-32 systems, - Ol and - Q2 are equivalent.

-2

Alternate syntax on Itanium-based systems: - O

Minimizes size; optimizes for speed, but disables some optimizations that
increase code size for a small speed benefit; for the Itanium® compiler, -
Q1 turns off software pipelining to reduce code size. This option enables
local optimizations within the source program unit, recognition of common
subexpressions, and expansion of integer multiplication and division using
shifts.

-3

Maximize speed plus use higher-level optimizations; optimizations include
loop transformation, software pipelining, and (IA-32 only) prefetching; this
option may not improve performance for some programs. Specifying - O3
includes the optimizations performed by - Q2. This option enables
additional global optimizations that improve speed (at the cost of extra
code size). These optimizations include:

0 Loop unrolling, including instruction scheduling

o Code replication to eliminate branches

o Padding the size of certain power-of-two arrays to allow more efficient
cache use. (See also this topic in Volume II: "Using Arrays Efficiently.")
Setting - O3 sets - f p.

On IA-32 systems, - OL, - O2, and - Oare equivalent.

On Itanium-based systems, - Q2 and - Oare equivalent.

FlNote

The last - On option specified on the command line takes precedence over
any others.

-opt_report

Default: Off

75

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

Generates an optimization report to st derr .

See also this topic in Volume II: "Optimizer Report Generation."
-opt_report_file file

Default: Off

Generates an optimization report and specifies the file name for the report. You
do not need to specify - opt _r eport if you use this option.

See also this topic in Volume II: "Optimizer Report Generation."
-opt_report_help

Default: Off

Displays the optimization phases available for reporting.

See also this topic in Volume IlI: "Optimizer Report Generation."
-opt_report_level {minjmed|max}

Default: - opt _report _|evel mn

Specifies the detail level of the optimization report.

See also this topic in Volume II: "Optimizer Report Generation."
-opt_report_phase phase

Default: Off

Specifies the optimization phase to generate the report for. Can be specified
multiple times on the command line for multiple optimizations.

See also this topic in Volume II: "Optimizer Report Generation."
-opt_report_routine [routine]
Default: Off

Generates reports from all routines with names containing r out i ne as part of
their name.

76

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

If the optional r out i ne is not specified, reports from all routines are generated.

See also this topic in Volume II: "Optimizer Report Generation."

-par_threshold n
Default: -par _t hreshol d 100

Sets a threshold for the auto-parallelization of loops based on the probability of
profitable parallel execution. n can be from 0 through 100.

n=0: loops get auto-parallelized regardless of computation work volume, that is,
always.

n=100: loops get auto-parallelized only if profitable parallel execution is almost
certain.

See also these topics in Volume II:
Auto-Parallelization Threshold Control and Diagnostics

Auto-Parallelization Overview
Auto-Parallelization: Enabling, Options, Directives, and Environment Variables

-parallel

Default: Off

Enables the auto-parallelizer to generate multithreaded code for loops that can
be safely executed in parallel. To use this option, you must also specify - O2 or -
3.

See also these topics in Volume II:

Auto-Parallelization Overview

Auto-Parallelization: Enabling, Options, Directives, and Environment Variables
-prefetch[-] (IA-32 systems only)

Default: -pr ef et ch (on)

Enables prefetch insertion optimization. The goal of prefetching is to reduce
cache misses by providing hints to the processor about when data should be

loaded into the cache. Note that - O3 must be specified for this option to work.

To disable the prefetch insertion optimization, use - pr ef et ch- .

77

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

-prof_dir dir
Default: The directory where the program is compiled.

Specifies the directory in which you intend to place the profiling output files (. dyn
and . dpi) to be created. The specified directory must already exist.

See also these topics in Volume II:

Advanced PGO Options
Specific Coding Guidelines for IA-32 Architecture

-prof_file file

Default: Source file name with extension . dyn and . dpi
Specifies the file name for the profiling summary file.
See also these topics in Volume II:

Advanced PGO Options
Specific Coding Guidelines for IA-32 Architecture

-prof_gen
Default: Off

Instruments a program for profiling to get the execution count of each basic
block.

See also these topics in Volume II:

Basic PGO Options
Example of Profile-Guided Optimization

-prof_use

Default: Off

Enables use of profiling information (including function splitting and function
grouping) during optimization. Instructs the compiler to produce a profile-
optimized executable and merges available profiling output files into a
pgopt i . dpifile.

If you use this option, it automatically enables - f nsplit[-].

Note that there is no way to turn off function grouping if you enable it using this
option.

78

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

See also these topics in Volume II:

Basic PGO Options

Example of Profile-Guided Optimization

-scalar_rep[-] (IA-32 systems only)

Default: - scal ar _rep (on)

Enables scalar replacement performed during loop transformation. Requires - C3.
-tppn

Default value for IA-32 systems: - t pp7

Default value for Itanium®-based systems: - t pp2

Optimizes for a particular Intel® processor. The executable will run on other

processors, but is optimized for processors noted below. Possible choices for n
are:

1 Optimize for Itanium processors (Itanium®-based systems only)

« 2 Optimize for Itanium 2 processors (Itanium®-based systems only)

5 Optimize for Intel Pentium® and Pentium® with MMX™ technology

processors (IA-32 systems only)

« 6 Optimize for Intel Pentium® Pro, Pentium® Il and Pentium® Il
processors (IA-32 systems only)

« 7 Optimize for Intel Pentium® 4, Intel® Xeon™, Intel Pentium® M

processors, and Intel® Pentium® 4 processors with Streaming SIMD

Extensions 3 (SSE3) instruction support (IA-32 systems only)

-unroll[n]
Default: - unr ol | (lets the compiler decide)
Specifies the maximum number of times to unroll a loop.
Possible values are:
« -unroll Lets the compiler decide.
« -unroll 0 Disables loop unrolling. (Note: This is the only value allowed
on Itanium-based systems; all other values are ignored.)

« -unrolln Setsn asthe maximum number of times a loop can be
unrolled.

-X{K|W|N|B|P} (IA-32 systems only)

79

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

Default: None.
Lets you target your program to run on a specific Intel processor. The resulting
code might contain unconditional use of features that are not supported on other

processors.

Possible values and the processors the code is optimized for are:

- xK Intel Pentium Il and compatible Intel processors

- XW Intel Pentium 4 and compatible Intel processors

- xN Intel Pentium 4 and compatible Intel processors

- xB Intel Pentium M and compatible Intel processors

- xP Intel Pentium 4 processors with Streaming SIMD Extensions 3
(SSE3) instruction support

To execute the program on x86 processors not provided by Intel Corporation, do
not specify this option.

ACaution

If a program compiled with this option is executed on a processor that lacks
the specified set of instructions, it can fail with an illegal instruction
exception, or display other unexpected behavior. In particular, programs
compiled with - xN, - xB, or - xP will emit run-time errors if they are
executed on unsupported processors.

Output Files Options

The output options let you specify names and directory locations for files that
result from the compilation.

Descriptions of Output Files Options

-C

Default: Off

Specifies that the compiler should compile to object (. o file) only and not link.

-fcode-asm

Default: Off

80

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

Specifies that the compiler should produce an assembly file with optional code
annotations. This option requires the use of the - S option.

-fsource-asm
Default; Off

Specifies that the compiler should produce an assembly file with optional source
annotations. This option requires the use of the - S option.

-f[no]verbose-asm
Default: On when - S is specified
Specifies that the compiler should produce an assembly file with compiler

comments, including options and version information.This option requires the use
of the - S option.

-module path

Specifies the directory (pat h) where module files (file extension . nod) are
placed. See also Searching for Include and .mod Files,

-ofilename

Default: Off

Specifies the name of the output file.

If - c is specified, - 0 specifies the name of the object file.

If - Sis specified, - o specifies the name of the assembly listing file.

If neither - c nor - S is specified, - o specifies the name of the executable file.
-Qinstall dir

Default: Off

Specifies di r as the root directory for the compiler installation.
-Qlocation,tool,path

Default: Off

81

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

Specifies the directory location of supporting tools, specifically the preprocessor,
compiler, assembler, and linker.

For syntax and details, see Using -Qlocation to Specify an Alternate Location for
a Tool.

-Qoption,tool,options
Default: Off

Passes options to tools, specifically the preprocessor, compiler, assembler, and
linker.

For syntax and details, see Using -Qoption to Pass Options to Tools.

-S

Default: Off

Specifies that the compiler should compile to assembly (. s) file only and not link.
-use_asm

Default: Off

Specifies that objects should be produced through the assembler.

Preprocessor Options

The preprocessor options let you specify how the compiler preprocesses files as
an optional first phase of the compilation and where it looks for source
directories.

See Also

Preprocessing Phase
Predefined Preprocessor Symbols

Descriptions of Preprocessor Options

-assume [no]source_include

Default: - assune source_i ncl ude

82

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

Specifies the directory searched for module files specified by a USE statement or
source files specified by an INCLUDE statement.

Possible values are:

« -assume source_include Search in source file directory
« -assume nosource_include Search in current directory

Note that you can use this option whether or not you use the -f pp option.
-Dname[=value]

Default: Off

Specifies one or more definitions for use with conditional compilation directives or
the Fortran preprocessor, fpp. If you have more than one, use separate - D

options.

The val ue can be a character or integer value. If val ue not specified, 1 is
assumed to be the value for name.

For an example, see Defining Preprocessor Symbols.

f:)] Note

Do not use D for namne, because it will conflict with the - DD option (alternate
syntax for - d_| i nes). However, you can use the - Dnanme=n syntax, such
as - DD=1.

-[no]fpp
Default: - nof pp

Alternate syntax: - [no] cpp; also f pp O is equivalent to - nof pp; alsof pp n
(where n is any number greater than 0) is equivalent to - f pp

Invokes the FPP Preprocessor (fpp) prior to compilation, enabling preprocessor
directives.

- cpp is the same as - f pp (runs fpp, not the C preprocessor).
-Idir

Default: Include path

83

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

Specifies one or more directories to add to the include path, which is searched
for module files (USE statement) and include files (INCLUDE statement). Use a
semicolon delimiter for more than one directory.

To request that the compiler search first in the directory where the source file
resides instead of the current directory, specify - assunme sour ce_i ncl ude.

For all USE statements and for those INCLUDE statements whose file name
does not begin with a device or directory name, the directories searched are as
follows, in this order:

1. The directory containing the first source file (if - assune
sour ce_i ncl ude was specified, which is the default).

2. The current default directory where the compilation is taking place.

3. If specified, the directory or directories listed in the - | di r option. The
order of searching multiple directories occurs within the specified list from
left to right

4. The directories indicated in the compile-time environment variable FPATH.

See also - noi ncl ude.

-preprocess_only

Default: Off

Alternate syntax: - Pand - F

Runs the Fortran preprocessor (fpp) and puts the result for each source file in a
corresponding . i or.i 90 file. The . i or.i 90 file does not have line numbers

(#) init. The source file is not compiled.

You need to specify - f pp with this option.

-U name

Default: Off.

Undefines any definition currently in effect for the symbol specified by nane.
-Wp,optionl[,option2,...]

Default: Off

Passes options (specified by opt i onl, opti on2, and so forth) to the
preprocessor.

84

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

This option is the same as - f pp, except that - f pp also invokes fpp.

Run-Time Options

The run-time options let you specify error checking to be performed at run time,
not compile time.

Descriptions of Run-Time Options

-[no]check [all] or -[no]check [none]

Default: Custom (options are specified individually).

Alternate syntax: - Cis equivalent to - check al |

Specifies all or no checking for run-time failures. Individual run-time check
options shown below are not available if - check al | or-check noneis
specified.

- nocheck is equivalent to - check none.

- check is equivalent to - check al I .

-check [no]arg_temp_created

Default: Custom (options are specified individually).
Default: - check noarg_tenp _created

Requests a run-time informational message if actual arguments are copied into
temporary storage before routine calls.

-check [no]bounds
Default: - check nobounds
Alternate syntax: - CB

Generates code to perform run-time checks on array subscript and character
substring expressions.

®

The default (- check nobounds) suppresses range checking.

85

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

For array bounds, each individual dimension is checked. Array bounds checking
is not performed for arrays that are dummy arguments in which the last
dimension bound is specified as * or when both upper and lower dimensions are
1.

Once the program is debugged, omit this option to reduce executable program
size and slightly improve run-time performance.

-check [no]format

Default: - check nof ormat, unless -vns is specified, in which case - check
f or mat is the default.

Requests a run-time error message when the data type for an item being
formatted for output does not match the FORMAT descriptor.

-check [no]output_conversion

Default: - check noout put _conver si on, unless - vis is specified, in which
case - check out put _conver si on is the default

Requests a run-time error message when format truncation occurs (that is, when
a number is too large to fit in the specified format field length without loss of
significant digits).

-[no]traceback
Default: - not r aceback

Requests that the compiler generate extra information in the object file that
allows the display of source file traceback information at run time when a severe
error occurs.

Specifying - t r aceback provides source file, routine name, and line number
correlation information in the displayed call stack hexadecimal addresses
(program counter trace) that is displayed when a severe error occurs. If -

t r aceback is not specified, this information is not displayed. However,
advanced users can locate the cause of the error using a map file and the
hexadecimal addresses of the stack displayed when a severe error occurs.

Specifying - t raceback will increase the size of the executable program, but
has no impact on run-time execution speeds.

The - t r aceback option functions independently of the - debug option.

86

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

Debugging Using idb

Debugging Using idb Overview

See these topics:

Getting Started with Debugging

Preparing Your Program for Debugging

Using Debugger Commands and Setting Breakpoints
Summary of Debugger Commands

Debugging the SQUARES Example Program
Displaying Variables

Expressions in Debugger Commands

Debugging Mixed-Language Programs

Debugging a Program that Generates a Signal

Locating Unaligned Data

Getting Started with Debugging

The Intel® Debugger (idb) is a source-level, symbolic debugger that lets you:

« Control the execution of individual source lines in a program.

« Set stops (breakpoints) at specific source lines or under various
conditions.

« Change the value of variables in your program.

- Refer to program locations by their symbolic names, using the debugger's
knowledge of the Intel Fortran language to determine the proper scoping
rules and how the values should be evaluated and displayed.

« Print the values of variables and set a tracepoint (trace) to notify you when
the value of a variable changes. (Another term for a tracepoint is a
watchpoint.)

« Perform other functions, such as examining core files, examining the call
stack, or displaying registers.

87

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

The idb debugger has two modes:

dbx (default mode)
gdb (optional mode)

All examples in this guide are shown in dbx mode.
L/Note

For complete information about idb, see the i db man page or the online
Intel® Debugger (IDB) Manual.

Debugging Options

To use the debugger, you should specify the i f ort command and the - g
command-line option. Traceback information and symbol table information are
both necessary for debugging. If you specify - g, the compiler provides the
symbol table and traceback information needed for symbolic debugging. (The -
not r aceback option cancels the traceback information.)

Likely uses of these options at the various stages of program development are as
follows:

During early stages of program development, use the - g option to create
unoptimized code (optimization level - Q0). This option also might be chosen later
to debug reported problems from later stages.

Traceback and symbol table information result in a larger object file. During the
later stages of program development, use - g0 or - g1 to minimize the object file
size and, as a result, the memory needed for program execution, usually with
optimized code. (The - g0 option eliminates the traceback information.)

When you have finished debugging your program, you can recompile and relink
to create an optimized executable program or remove traceback and symbol
table information with the st ri p command. (See strip(1).)

Using the - hel p option to the compiler indicates - g only.

Note: Debugging of optimized code is not fully supported on Intel platforms.

Preparing Your Program for

Debugging

88

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

Use the i f ort command with certain options to create an executable program
for debugging. To invoke the debugger, enter the debugger shell command and
the name of the executable program.

The following commands create (compile and link) the executable program and
invoke the interface to the debugger:

ifort -g -o squares squares.f90

i db squares

Li nux Application Debugger for xx-bit applications, Version
X. X, Build xxxx

object file nane: squares

readi ng synbolic information ... done

(idb)

In this example, the i f ort command:
« Compiles and links the program squar es. f 90.
+ Requests symbol table information needed for symbolic debugging and no
optimization (- g).

- Names the executable file squar es instead of a. out (-0 squares).

The i db shell command runs the debugger, specifying the executable program
squar es.

At the debugger prompt (i db) , you can enter a debugger command.

See also the online Intel ® Debugger (IDB) Manual.

Using Debugger Commands and

Setting Breakpoints

To find out what happens at critical points in your program, you need to stop
execution at these points and look at the contents of program variables to see if
they contain the correct values. Points at which the debugger stops program
execution are called breakpoints.

To set a breakpoint, use one of the forms of the st op or st opi commands.
Using a sample program, the following debugger commands set a breakpoint at

line 4, run the program, continue the program, delete the breakpoint, rerun the
program, and return to the shell:

(idb) stop at 4

89

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

[#1: stop at "squares.f90":4]

(idb) run
[1] stopped at [squares: 4 0x120001880]

4 OPEN(UNI T=8, FILE="datafile.dat', STATUS=' OLD)
(| db) cont

Process has exited with status 0O
(i1db) delete 1

(idb) rerun

Process has exited with status 0O
(idb) quit

%

In this example:

- Thestop at 4 command sets a breakpoint at line 4. To set a breakpoint
at the start of a subprogram (such as cal c), use the st op i n command
(suchasstop in calc).

« The run command begins program execution and stops at the first
breakpoint. The program is now active, allowing you to view the values of
variables with print commands and perform related functions.

+ The cont command resumes (continues) program execution. In addition
to the cont command, you can also use the st ep, next, run, orrer un
commands to resume execution.

« The del et e 1 command shows how to delete a previously set breakpoint
(with event number 1). For instance, you might need to delete a previously
set breakpoint before you use the r er un command.

« The r er un command runs the program again. Since there are no
breakpoints, the program runs to completion.

- The quit command exits the debugger and returns to the shell.

Other Debugger Commands

Other debugger commands include the following:

« To get help on debugger commands, enter the hel p command.

- To display previously typed debugger commands, enter the hi st ory
command.

« To examine the contents of a location, use the pri nt or dunp
commands.

« To execute a shell command, use the sh command (followed by the
desired shell command). For instance, if you cannot recall the name of a
FUNCTION statement, the following gr ep shell command displays the
lines containing the letters FUNCTION, allowing use of the function name
(SUBSORT) in the stop in command:

90

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building

Applicatio

(1db) sh grep FUNCTI ON dat a. f or
| NTEGER*4 FUNCTI ON SUBSCRT (A, B)
(idb) stop in subsort

(i db)

See also Summary of Debugger Commands.

Summary of Debugger Commands

The table below lists some of the more frequently used debugging commands
available in idb. Many of these commands can be abbreviated (for example, you
can enter c instead of cont and s instead of st ep. You can use the al | as
command to get a complete list of these abbreviations and even create your own

aliases.

The table below shows examples of the most commonly used debugger
commands. For more information, see the online Intel ® Debugger (IDB) Manual.

ns

Command Description

example

catch Displays all signals that the debugger is currently set to catch.
See also i gnore.

catch fpe Tells the debugger to catch the fpe signal (or the signal
specified). This prevents the specified signal from reaching
the Intel Fortran run-time library (RTL).

ﬁﬁglcihgned Tells the debugger to catch the unaligned signal.

cont Resumes (continues) execution of the program that is being
debugged. Note that there is no idb command named
conti nue.

delete 2 Removes the breakpoint or tracepoint identified by event
number 2. See also st at us.

delete all Removes all breakpoints and tracepoints.

hel p Displays debugger help text.

history 5 Displays the last five debugger commands.

i gnore Displays the signals the debugger is currently set to ignore.
The ignored signals are allowed to pass directly to the Intel
Fortran RTL, See also cat ch.

ignore fpe Tells the debugger to ignore the fpe signal (or the signal
specified). This allows the specified signal to pass directly to
the Intel Fortran RTL, allowing message display.

L%QIO{ Sned Tells the debugger to ignore the unaligned signal (the default).

kill

Terminates the program process, leaving the debugger

91

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building

Applications

running and its breakpoints and tracepoints intact for when the
program is rerun.

list

Displays source program lines. To list a range of lines, add
the starting line number, a comma (,), and the ending line
number, such aslist 1,9.

print k

Displays the value of the specified variable, such as K.

printregs

Displays all registers and their contents.

next

Steps one source statement but does not step into calls to
subprograms, Compare with st ep.

qui t

Ends the debugging session.

run

Runs the program being debugged. You can specify program
arguments and redirection.

rerun

Runs the program being debugged again. You can specify
program arguments and redirection.

return
[routine-
nane]

Continues execution of the function until it returns to its caller.

When using the st ep command, if you step into a subprogram
that does not require further investigation, use the return
command to continue execution of the current function until it
returns to its caller. If you include the name of a routine with
the ret urn command, execution continues until control is
returned to that routine.

The r out i ne- nane is the name of the routine, usually
named by a PROGRAM, SUBROUTINE, or FUNCTION
statement. If there is no PROGRAM statement, the debugger
refers to the main program with a prefix of nmai n$ followed by
the file name.

sh nore

progout . f90

Executes the shell command nor e to display file pr ogout . f 90,
then returns to the debugger environment.

show t hr ead

Lists all threads known to the debugger.

status Displays breakpoints and tracepoints with their event
numbers. See also del et e.
step Steps one source statement, including stepping into calls of a

subprogram. For Intel Fortran I/O statements, intrinsic
procedures, library routines, or other subprograms, use the
next command instead of st ep to step over the subprogram
call. Compare with next ; see also return.

stop in foo

Stops execution (breakpoint) at the beginning of routine f 0o.

stop at 100 Stops execution at line 100 (breakpoint) of the current source
file.

stopi at Stops execution at address xxxxxxx of the current

XXXXXXX executable program.

thread [n] Identifies or sets the current thread context.

92

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building

Applications

wat ch. Displays a message when the debuggee (or user program)

| ocation . : g
accesses the specified memory location. For example: wat ch
0x140000170

Wgﬁ _Cgbl e m Displays a message when the debuggee (or user program)

vart accesses the variable specified by m

‘g@ﬁ}oiols Displays the data type of the specified symbol.

when at 9 Executes a command or commands.

{ command}

When a specified line (such as 9) is reached, the conmmand or
commands are executed. For example, when at 9 {print Kk}
prints the value of variable K when the program executes
source code line 9.

when in name | Executes a command or commands.
{ command}
When a procedure specified by nane is reached, the
comand or commands are executed. For example, when in
cal c_ave {print k} prints the value of variable K when the
program begins executing the procedure named cal c_ave.

wher e Displays the call stack.

‘gffre thread | Displays the stack traces of all threads.

The debugger supports other special-purpose commands. For example:

« You might use the att ach and det ach commands for programs with very
long execution times.

« Thelistobj command might be helpful when debugging programs that
depend on shared libraries. The I i st obj command displays the names of
executables and shared libraries currently known to the debugger.

Debugging the SQUARES Example

Program

The example below shows a program called SQUARES that requires debugging.
The program was compiled and linked without diagnostic messages from either
the compiler or the linker. However, this program contains a logic error in an
arithmetic expression.

Compiler-assigned line numbers have been added in the example so that you
can identify the source lines to which the explanatory text refers.

PROGRAM SQUARES
| NTEGER | NARR(10), OUTARR(10), |, K

93

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

I Read the input array fromthe data file.
OPEN(UNI T=8, FILE="datafile.dat', STATUS=' OLD)
READ(8, *, END=5) N, (INARR(1), 1=1,N)
5 CLOSE (UNI T=8)

I Square all nonzero elenents and store in OUTARR

K=20
DOl =1, N
| F (INAR(I) .NE. 0) THEN
K=K+ 1 I add this line
QUTARR(K) = I NARR(I)**2
ENDI F
END DO
I Print the squared output values. Then stop.
PRI NT 20, N
20 FORMAT (' Total nunber of elenments read is',|4)
PRI NT 30, K
0 FORVAT (' Number of nonzero elenents is',14)
DO 1=1,K
PRI NT 40, |, OUTARR(K)
40 FORVAT(' Elenent', 14, 'Has value',I6)
END DO

END PROGRAM SQUARES
The program SQUARES performs the following functions:

1. Reads a sequence of integer numbers from a data file and saves these numbersin
thearray INARR. Thefiledat af i | e. dat contains one record with the integer
values4, 3, 2, 5, and 2. The first number indicates the number of data items that
follow.

2. Entersaloop in which it copies the square of each nonzero integer into another
array OUTARR.

3. Printsthe number of nonzero elementsin the original sequence and the square of
each such element.

Note: This example assumes that the program was executed without array
bounds checking (set by the - check bounds command-line option). When
executed with array bounds checking, a run-time error message appeatrs.

When you run SQUARES, it produces the following output, regardless of the
number of nonzero elements in the data file:

squar es
Nunber of nonzero el ements is 0

94

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

The logic error occurs because variable K, which keeps track of the current index
into OUTARR, is not incremented in the loop on lines 9 through 13. The
statement K = K + 1 should be inserted just before line 11.

The following example shows how to start the debugging session and how to use
the character-cell interface to idb to find the error in the sample program shown
earlier. Comments keyed to the callouts at the right follow the example:

ifort -g -0 squares squares.f90 (1)

i db squares (2)

Li nux Application Debugger for xx-bit applications, Version
X. X, Build xxxx

object file nane: squares

readi ng synbolic information ... done
(idb) list 1,9 (3)

1 PROGRAM SQUARES

2 | NTEGER | NARR(20), QOUTARR(20)

3 C ! Read the input array fromthe data file.
> 4 OPEN(UNI T=8, FILE="datafile.dat', STATUS=' OLD)

5 READ(8, *, END=5) N, (INARR(l), 1=1,N)

6 5 CLOSE (UNI T=8)

7 C | Square all nonzero el enents and store in
OUTARR.

8 K=0

9 DO 101 =1, N
(idb) stop at 8 (4)
[#1: stop at "squares.f90": 8]
(idb) run (5)
[1] stopped at ["squares.f90":4 0x120001a88]
> 8 K=20
(idb) step (6)
stopped at [squares:9 0x120001a90]

9 DO10 I =1, N
(1db) print n, k (7)
4 0
(idb) step (8)
stopped at [squares: 10 0x120001ab0]]

10 | F(I NARR(1) .NE. 0) THEN
(idb) s
stopped at [squares: 11 0x120001lacc]

11 QUTARR(K) = I NARR(I)**2
(idb) print i, k (9)
10
(idb) assign k =1 (10)
(idb) watch variable k (11)
[#2: watch variable (wite) k 0x1400002c0 to 0x1400002c3]
(1db) cont (12)
Nunmber of nonzero el enents is 1
El enent 1 has val ue 4

95

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building

Applications

Process has exited with status O

(idb) quit (13)

% vi squares. f90 (14)
10: | F(I NARR(1) . NE. 0) THEN

11: K=K+ 1

12: OUTARR(K) = I NARR(I)**2

13: ENDI F

% fort -g -0 squares squares.f90 (15)

% i db squares
Wel conme to the idb Debugger Version x.Xx-XxXx

Readi ng synbolic information ...done

(1db) when at 12 {print k} (16)
[#1: when at "squares.f90":12 { print K}]
(i1db) run (17)

[1] when [squares: 12 0x120001ae0]
1

[1] when [squares: 12 0x120001ae0]
2

[1] when [squares: 12 0x120001lae0]
3

[1] when [squares: 12 0x120001lae0]
4

Nunmber of nonzero el ements is 4
El ement 1 has val ue 9

El ement 2 has val ue 4

El ement 3 has val ue 25

El ement 4 has val ue 4

Process has exited with status 0
(idb) quit (18)

%

96

. On the command line, the - g option directs the compiler to write the

symbol information associated with SQUARES into the object file for the
debugger. It also disables most optimizations done by the compiler to
ensure that the executable code matches the source code of the program.

. The shell command i db squar es runs the debugger, which displays its

banner and the debugger prompt, (i db) . This command specifies the
executable program as a file named squar es. You can now enter
debugger commands. After the i db squar es command, execution is
initially paused before the start of the main program unit (before program
SQUARES, in this example).

. Thelist 1,9 command prints lines 1 through 9.
. The command st op at 8 sets a breakpoint (1) at line 8.

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

5. The r un command begins program execution. The program stops at the
first breakpoint, line 8, allowing you to examine variables N and K before
program completion.

6. The st ep advances the program to line 9. The st ep command ignores
source lines that do not result in executable code; also, by default, the
debugger identifies the source line at which execution is paused. To avoid
stepping into a subprogram, use the next command instead of st ep.

7. The command pri nt n, k displays the current values of variables N
and K. Their values are correct at this point in the execution of the
program.

8. The two st ep commands continue executing the program into the loop
(lines 9 to 11) that copies and squares all nonzero elements of INARR into
OUTARR. Certain commands can be abbreviated. In this example, the s
command is an abbreviation of the st ep command.

9. The command print i, k displays the current values of variables | and
K. Variable | has the expected value, 1. But variable K has the value 0
instead of the expected value, 1. To fix this error, K should be incremented
in the loop just before it is used in line 11.

10.The assi gn command assigns K the value 1.

11.The wat ch vari abl e k command sets a watchpoint that is triggered
every time the value of variable K changes. In the original version of the
program, this watchpoint is never triggered, indicating that the value of
variable K never changes (a programming error).

12.To test the patch, the cont command (an abbreviation of cont i nue)
resumes execution from the current location. The program output shows
that the patched program works properly, but only for the first array
element. Because the watchpoint (wat ch vari abl e k command) does
not occur, the value of K did not change and there is a problem. The idb
message "Process has exited with status 0" shows that the program
executed to completion.

13.The qui t command returns control to the shell so that you can correct the
source file and recompile and relink the program.

14.The shell command vi runs a text editor and the source file is edited to
add K = K + 1 after line 10, as shown. (Compiler-assigned line numbers
have been added to clarify the example.)

15.The revised program is compiled and linked. The shell command i db
squar es starts the debugger, using the revised program so that its
correct execution can be verified.

16.The when at 12 {print k} command reports the value of K at each
iteration through the loop.

17.The r un command starts execution.

18.The displayed values of K confirm that the program is running correctly.

19.The qui t command ends the debugging session, returning control to the
shell.

97

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

Displaying Variables in the Debugger

To refer to a variable, use either the uppercase or lowercase letters. For
example:

(idb) print J
(idb) print j

You can enter command names in uppercase:
(idb) print J

If you compile the program with the command-line option - nanmes as_i s and
you need to examine case-sensitive names, you can control whether idb is case-
sensitive by setting the $I ang environment variable to the name of a case-
sensitive language.

Module Variables

To refer to a variable defined in a module, insert an opening quote (‘), the module
name, and another opening quote (‘) before the variable name. For example, with
a variable named J defined in a module named nodf i | e (statement MODULE
MODFILE), enter the following command to display its value:

(1db) list 5,9
5 USE MODFI LE
6 | NTEGER*4 J
7 CHARACTER*1 CHR
8 J = 2**8
(1db) print ‘ MODFILE J
256

Common Block Variables

You can display the values of variables in a Fortran common block by using
debugger commands such as print or whati s.

To display the entire common block, use the common block name.

To display a specific variable in a common block, use the variable name. For
example:

(i db) list 1,11
1 PROGRAM EXAMPLE
2

98

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Buildi
Applicatio
3 | NTEGER*4 | NT4
4 CHARACTER*1 CHR
5 COVWDON / COM_STRA/ | NT4, CHR
6
7 CHR = "L’
8
9 END
(1db) print COM STRA
COVIVON
INT4 = 0O
CHR = "L"
(i db)
(1db) print CHR

n Lll

If the name of a data item in a common block has the same name as the
common block itself, the data item is accessed.

Derived-Type Variables

Variables in a Fortran 95/90 derived-type (TYPE statement) are represented in
idb commands such as print or whati s using Fortran 95/90 syntax form.

For derived-type structures, use the derived-type variable name, a percent sign
(%), and the member name. For example:

(i db) list 3,11
3 TYPE X
4 | NTEGER A(5)
5 END TYPE X
6
7 TYPE (X) Z
8
9 Z%A =1
10
11 PRI NT *, Z%A
(1db) print Z%A
(1) 1
(2) 1
(3) 1
(4) 1
(5) 1
(i db)

To display the entire object, use the pri nt command with the object name. For
example:

(idb) print zZ

ng
ns

99

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

Record Variables

To display the value of a field in a record structure, enter the variable name as:
the record name, a delimiter (either a period (.) or a percent sign (%)), and the
field name.

To view all fields in a record structure, enter the name of the record structure,
such as REC (instead of REC.CHR or REC%CHR) in the previous example.

Pointer Variables

Intel Fortran supports two types of pointers:

« Fortran 95/90 pointers (standard-conforming)
« Integer pointers (extension to the Fortran 95/90 standards)

Fortran 95/90 Pointers

Fortran 95/90 pointers display their corresponding target data with a pri nt
command.

Comments keyed to the callouts at the right follow the example:

ifort -g point.f90

idb ./a.out

Li nux Application Debugger for xx-bit applications, Version
X. X, Build xxxx

object file nane: ./a.out

Readi ng synbolic information ...done

(idb) stop in ptr

[#1: stop in ptr]

(idb) list 1:13

1 program ptr

2

3 integer, target :: x(3)

4 i nteger, pointer :: xp(:)

5

6 =(/ 1, 2, 3/)

7 Xp => X

8

9 print *, "x =", X

10 print *, "xp =", xp

11

12 end
(idb) run
[1] stopped at [ptr 6 0x120001838]

(/ 1, 2, 3/)

100

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building

Applications

(i db) whatis x
int x(1:3)
(idb) whatis xp (1)
int xp(:)
(idb) s
stopped at [ptr:7 0x120001880]

7 Xp => X
(idb) s
stopped at [ptr:9 0x120001954]

9 print *, "x =", X
(idb) s
X = 1 2 3
stopped at [ptr:10 0x1200019c8]
(idb) s
Xp = 1 2 3
stopped at [point:12 0x120001ad8]

12 end
(idb) S
Xp = 1 2 3
(1db) whatis xp (2)
int xp(1l:3)
(idb) print xp
(1) 1
(2) 2
(3) 3
(idb) quit

%

1. Forthefirstwhati s xp command, xp has not yet been assigned to point
to variable x and is a generic pointer.

2. Since xp has been assigned to point to variable x, for the second what i s
xp command, xp takes the same size, shape, and values as X.

Integer Pointers

Like Fortran 95/90 pointers, integer pointers (also known as Cray*-style pointers)
display the target data in their corresponding source form with a pri nt command:

(idb) stop at 14

[#1: stop at "dfpoint.f90":14]

(idb) run

[1] stopped at [df point:14 0x1200017e4]
(idb) list 1,14

pr ogr am df poi nt

real i(5)
pointer (p,i)

OO WNE

n =25

101

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

7
8 p = malloc(sizeof (i(1))*n)
9

10 doj =1,5

11 i(j) = 10%j

12 end do

13

> 14 end

(1db) whatis p

float (1:5) pointer p
(idb) print p
0x140003060 = (1) 10
(2) 20

(3) 30

(4) 40

(5) 50

(idb) quit

%

Array Variables

For array variables, put subscripts within parentheses, as with Fortran 95/90
source statements. For example:

(1db) assign arrayc(1l)=1
You can print out all elements of an array using its name. For example:
i db
)
)
3)
db

print arrayc

NN AN AN N
WN -

)
1
0
0
)

Avoid displaying all elements of a large array. Instead, display specific array
elements or array sections. For example, to print array element arrayc(2):

(i1db) print arrayc(2)
(2) O

Array Sections
An array section is a portion of an array that is an array itself. An array section
can use subscript triplet notation consisting of a three parts: a starting element,

an ending element, and a stride.

Consider the following array declarations:

102

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

| NTEGER, DI MENSI ON(0: 99) cooarr
| NTEGER, DI MENSI ON(0:4,0:4) :: FiveByFive

Assume that each array has been initialized to have the value of the index in
each position, for example, FiveByFive(4,4) = 44, arr(43) = 43. The following
examples are array expressions that will be accepted by the debugger:

(idb) print arr(2)
2

(idb) print arr(0:9:2)
(0) =0

(2)
(4)
(6)
(8) =
(idb)
(0,3)
(1,3)
(2,3)
(3,3)
(4,3)
(1db)

i ninsoeoohN

rint FiveByFive(:,3)
3
13
23
33
43

The only operations permissible on array sections are whatis and print.

Assignment to Arrays
Assignment to array elements are supported by idb.

For information about assigning values to whole arrays and array sections, see
the Fortran chapter in the online Intel® Debugger (IDB) Manual.

Complex Variables

idb supports COMPLEX or COMPLEX*8, COMPLEX*16, and COMPLEX*32
variables and constants in expressions.

Consider the following Fortran program:

PROGRAM conpl ext est
COWLEX*8 C8 /(2.0,8.0)/
COWPLEX*16 Cl16 /(1.23,-4.56)/
REAL* 4 R4 /2.0/
REAL* 8 R8 /2.0/
REAL* 16 R16 /2.0/

TYPE *, "C8=", C8

103

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

TYPE *, "Cl6=", Cl6
END PROGRAM

idb supports the display and assignment of COMPLEX variables and constants
as well as basic arithmetic operators. For example:

Wel conme to the idb Debugger Version x.Xx-XxX
object file nane: conpl ex

Readi ng synbolic information ...done

(1db) stop in conpl extest

[#1: stop in conpl extest]

(idb) run
[1] stopped at [conplextest: 15 0x1200017b4]
15 TYPE *, "C8=", C8

(idb) whatis c8

conpl ex c8

(idb) whatis cl6

doubl e conpl ex c16

(1db) print c8

(2, 8)

(idb) print cl6

(1.23, -4.56)

(1db) assign cl16=(-2.3E+10, 4. 5e-2)
(idb) print cl16

(-23000000512, 0.04500000178813934)
(1db)

Data Types

The table below shows the Intel Fortran data types and their equivalent built-in
debugger names:

Fortran 95/90 data type declar ation Debugger equivalent
CHARACTER character

INTEGER, INTEGER(KIND=nN) integer, integer*n
LOGICAL, LOGICAL (KIND=n) logical, logical*n
REAL, REAL(KIND=4) real

DOUBLE PRECISION, REAL(KIND=8) real*8
REAL(KIND=16) real*16

COMPLEX, COMPLEX(KIND=4) complex

DOUBLE COMPLEX, COMPLEX(KIND=8) | double complex
COMPLEX(KIND=16), COMPLEX*32 long double complex

Expressions in Debugger Commands

104

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

Expressions in debugger commands use Fortran 95/90 source language syntax
for operators and expressions.

Enclose debugger command expressions between curly braces ({ }). For
example, the expression print k in the following statement is enclosed between
curly braces ({ }):

(1db) when at 12 {print k}

Fortran Operators

The Intel Fortran operators include the following:

- Relational operators, such as less than (.LT. or <) and equal to (.EQ. or

« Logical operators, such as logical conjunction (.AND.) and logical
disjunction (.OR.)

- Arithmetic operators, including addition (+), subtraction (--), multiplication
(*), and division (/).

For a complete list of operators, see the Intel Fortran Language Reference
Manual.

Procedures

The idb debugger supports invocation of user-defined specific procedures using
Fortran 95/90 source language syntax.

See Also
Intel Fortran Language Reference Manual

Online Intel ® Debugger (IDB) Manual

Debugging Mixed-Language

Programs

The idb debugger lets you debug mixed-language programs. Program flow of
control across subprograms written in different languages is transparent.

The debugger automatically identifies the language of the current subprogram or
code segment on the basis of information embedded in the executable file. For

105

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

example, if program execution is suspended in a subprogram in Fortran, the
current language is Fortran. If the debugger stops the program in a C function,
the current language becomes C. The debugger uses the current language to
determine the valid expression syntax and the semantics used to evaluate an
expression.

The debugger sets the $I ang environment variable to the language of the
current subprogram or code segment. By manually setting the $I ang
environment variable, you can force the debugger to interpret expressions used
in commands by the rules and semantics of a particular language. For example,
you can check the current setting of $| ang and change it as follows:

(idb) print $lang
IIC++II
(idb) set $lang = "Fortran”

When the $| ang environment variable is set to "Fortran”, names are case-
insensitive. To make names case-sensitive when the program was compiled with
the - nanmes as_i s option, specify another language for the $I ang environment
variable, such as C, view the variable, then set the $I ang environment variable
to "Fortran".

Debugging a Program that Generates

a Signal

If your program encounters a signal (exception) at run time, to make it easier to
debug the program, you should recompile and relink with the following command-
line options before debugging the cause of the signal:

« Use the - f pen option to control the handling of signals.
- As with other debugging tasks, use the - g option to generate sufficient
symbol table information and debug unoptimized code.

If requested, idb will catch and handle signals before the Intel Fortran run-time
library (RTL) does. You can use the idb commands cat ch and i gnor e to
control whether idb catches signals or ignores them:

« When idb catches a sigOnal, an idb message is displayed and execution
stops at that statement line. The error-handling routines provided by the
RTL are not called. At this point, you can examine variables and
determine where in the program the signal has occurred.

« When idb ignores a signal, the signal is passed to the RTL. This allows the
handling and display of run-time signal messages in the manner
requested during compilation.

106

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

To obtain the appropriate run-time error message when debugging a program
that generates a signal (especially one that allows program continuation), you
might need to use the i gnor e command before running the program. For
instance, use the following command to tell the debugger to ignore floating-point
signals and pass them through to the RTL:

(idb) ignore fpe

In cases where you need to locate the part of the program causing a signal,
consider using the wher e command.

Locating Unaligned Data

Unaligned data can slow program execution. You should determine the cause of
the unaligned data, fix the source code (if necessary), and recompile and relink
the program.

If your program encounters unaligned data at run time, to make it easier to debug
the program, you should recompile and relink with the - f pen option to control
the handling of exceptions.

To determine the cause of the unaligned data when using idb, follow these steps:

1. Run the debugger, specifying the program with the unaligned data (shown
as t est pr og in the following example): i db test prog
2. Before you run the program, enter the cat ch unal i gned command:
(1db) catch unaligned
3. Run the program:
(1db) run
Unal i gned access pi d=28413 <test prog> va=140000154
pc=3f f 80805d60
ra=1200017e8 type=stl
Thread recei ved signal BUS
stopped at [oops: 13 0x120001834]
13 end
4. Enteral i st command to display the source code at line 12:
(idb) list 12

12 i4 =1
> 13 end

5. Enter the wher e command to find the location of the unaligned access:
(idb) where

6. Use any other appropriate debugger commands needed to isolate the
cause of the unaligned data, such as up, | i st , and down.

7. Repeat these steps for other areas where unaligned data is reported. Use
the r er un command to run the program again instead of exiting the
debugger and running it from the shell prompt.

107

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

8. After fixing the causes of the unaligned data, compile and link the program
again.

Data and I/O

Data Representation

Data Representation Overview

See these topics:

Intrinsic Data Types

Integer Data Representations Overview

Logical Data Representations

Native IEEE Floating-Point Representations Overview
Character Representation

Hollerith Representation

Intrinsic Data Types

Intel® Fortran expects numeric data to be in native little endian order, in which
the least-significant, right-most zero bit (bit 0) or byte has a lower address than
the most-significant, left-most bit (or byte). For information on using nonnative big
endian and VAX* floating-point formats, see Converting Unformatted Numeric
Data.

The symbol :A in any figure specifies the address of the byte containing bit O,
which is the starting address of the represented data element.

The following table lists the intrinsic data types used by Intel Fortran, the storage
required, and valid ranges. For example, the declaration INTEGER(4) is the
same as INTEGER(KIND=4) and INTEGER*4.

Data Type Storage Description
BYTE 1 byte A BYTE declaration is a signed integer data type equivalent to
INTEGER(1) (8 bits) INTEGER(1).

108

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building

Applications
INTEGER See Signed integer, either INTEGER(2), INTEGER(4), or
INTEGER(2), | INTEGER(8). The size is controlled by the -integer_size nn
INTEGER(4), | compiler option. The default is -integer_size 32
and (INTEGER(4)).
INTEGER(8).
INTEGER(1) 1 byte Signed integer value from -128 to 127.
(8 bits)
INTEGER(2) 2 bytes Signed integer value from -32,768 to 32,767.
(16 bits)
INTEGER(4) 4 bytes Signed integer value from -2,147,483,648 to 2,147,483,647.
(32 hits)
INTEGER(8) 8 bytes Signed integer value from -9,223,372,036,854,775,808 to
(64 bits) 9,223,372,036,854,775,807.
REAL(4) 4 bytes Single-precision real floating-point values in IEEE S_floating
REAL (32 hits) format ranging from 1.17549435E-38 to 3.40282347E38.
Values between 1.17549429E-38 and 1.40129846E-45 are
denormalized (subnormal).
REAL(8) 8 bytes Double-precision real floating-point values in IEEE T_floating
DOUBLE PRECISION (64 bits) format ranging from 2.2250738585072013D-308 to
1.7976931348623158D308. Values between
2.2250738585072008D-308 and 4.94065645841246544D-
324 are denormalized (subnormal).
REAL(16) 16 bytes Extended-precision real floating-point values in IEEE-style
EXTENDED (128 bits) X_floating format ranging from
PRECISION 6.4751751194380251109244389582276465524996Q-4966
to
1.189731495357231765085759326628007016196477Q4932.
COMPLEX(4) 8 bytes Single-precision complex floating-point values in a pair of
COMPLEX (64 bits) IEEE S_floating format parts: real and imaginary. The real
and imaginary parts each range from 1.17549435E-38 to
3.40282347E38. Values between 1.17549429E-38 and
1.40129846E-45 are denormalized (subnormal).
COMPLEX(8) 16 bytes Double-precision complex floating-point values in a pair of
DOUBLE COMPLEX (128 bits) IEEE T_floating format parts: real and imaginary. The real
and imaginary parts each range from 2.2250738585072013D-
308 to 1.7976931348623158D308. Values between
2.2250738585072008D-308 and 4.94065645841246544D-
324 are denormalized (subnormal).
COMPLEX(16) 32 bytes Extended-precision complex floating-point values in a pair of
EXTENDED (256 bits) IEEE-style X_floating format parts: real and imaginary. The
PRECISION real and imaginary parts each range from
6.4751751194380251109244389582276465524996Q-4966
to
1.189731495357231765085759326628007016196477Q4932.
LOGICAL See Logical value, either LOGICAL(2), LOGICAL(4), or
LOGICAL(2), | LOGICAL(8). The size is controlled by the -integer_size nn
LOGICAL(4), | compiler option. The default is -integer_size 32
and (LOGICAL(4)).
LOGICAL(8).

109

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

LOGICAL(1) 1 byte Logical values .TRUE. or .FALSE.
(8 bits)
LOGICAL(2) 2 bytes Logical values .TRUE. or .FALSE.
(16 bits)
LOGICAL(4) 4 bytes Logical values .TRUE. or .FALSE.
(32 hits)
LOGICAL(8) 8 bytes Logical values .TRUE. or .FALSE.
(64 bits)
CHARACTER 1 byte (8 Character data represented by character code convention.
bits) per Character declarations can be in the form
character CHARACTER(LEN=n) or CHARACTER™*n, where n is the
number of bytes or n is (*) to indicate passed-length format.
HOLLERITH 1 byte (8 Hollerith constants.
bits) per
Hollerith
character

In addition, you can define binary (bit) constants as explained in the Language
Reference.

The following sections discuss the intrinsic data types in more detail:

+ Integer Data Representations

« Logica Data Representations

« Native |EEE Floating-Point Representations
+ Character Representation

+ Hollerith Representation

Integer Data Representations

Integer Data Representations

Overview

Integer data lengths can be 1, 2, 4, or 8 bytes in length.

The default data size used for an INTEGER data declaration is INTEGER(4)
(same as INTEGER(KIND=4)), unless the - i nt eger _si ze 16 or the -

i nt eger _si ze 64 option was specified.

Integer data is signed with the sign bit being 0 (zero) for positive numbers and 1
for negative numbers.

The following sections discuss integer data:

110

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

+ INTEGER(KIND=1) Representation
« INTEGER(KIND=2) Representation
+ INTEGER(KIND=4) Representation
+ INTEGER(KIND=8) Representation

INTEGER(KIND=1) Representation

INTEGER(1) values range from -128 to 127 and are stored in 1 byte, as shown
below:

=] 0

7
g BIMNARY HUMEBER A

Zk-3514-EE
Integers are stored in a two's complement representation. For example:

+22 16(hex)
-7 F9(hex)

INTEGER(KIND=2) Representation

INTEGER(2) values range from -32,768 to 32,767 and are stored in 2 contiguous
bytes, as shown below:

15 14 0

g BIHARY HUMBER A

ZH-0ras-GE

Integers are stored in a two's complement representation. For example:

+22
-7

0016(hex)
FFFI(hex)

INTEGER(KIND=4) Representation

INTEGER(4) values range from -2,147,483,648 to 2,147,483,647 and are stored
in 4 contiguous bytes, as shown below.

a0 0
S
& BINARY HUMBER 7y
N

ZK-0Pes-GE

111

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

Integers are stored in a two's complement representation.

INTEGER(KIND=8) Representation

INTEGER(8) values range from -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807 and are stored in 8 contiguous bytes, as shown
below.

53 62 0
o

& A

H

Zk-52ea8-GE

Integers are stored in a two's complement representation.

Logical Data Representations

Logical data lengths can be 1-, 2-, 4-, or 8-bytes in length.

The default data size used for a LOGICAL data declaration is LOGICAL(4) (same
as LOGICAL(KIND=4)), unless the -i nt eger _si ze 16 or -i nt eger _si ze
64 option was specified.

To improve performance on Itanium®-based systems, use LOGICAL(4) (or
LOGICAL(8)) rather than LOGICAL(2) or LOGICAL(1).

LOGICAL(KIND=1) values are stored in 1 byte. In addition to having logical
values .TRUE. and .FALSE., LOGICAL(1) data can also have values in the range
-128 to 127. Logical variables can also be interpreted as integer data.

In addition to LOGICAL(1), logical values can also be stored in 2 (LOGICAL(2)),
4 (LOGICAL(4)), or 8 (LOGICAL(8)) contiguous bytes, starting on an arbitrary
byte boundary.

If the - f psconp nol ogi cal compiler option is set (the default), the low-order
bit determines whether the logical value is true or false. Specify -f psconp

| ogi cal for Microsoft* Fortran PowerStation logical values, where 0 (zero) is
false and non-zero values are true.

LOGICAL(1), LOGICAL(2), LOGICAL(4), and LOGICAL(8) data representation
(when - f psconp nol ogi cal option was set) appears below:

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building

Applications
n 1 @
TRUE: LUHDEFINED BITS 1]:A
n 1 @
FALSE: UNCDEFIMED BITS [

Fey: n=7, 15 21, or &2 depending on LOGICAL declaration sia
FH- 550048 5E

Native IEEE* Floating-Point Representations

Native IEEE* Floating-Point

Representations Overview

The REAL(4) (IEEE* S_floating), REAL(8) (IEEE T_floating), and REAL(16)
(IEEE-style X_floating) formats are stored in standard little endian IEEE binary
floating-point notation. (See IEEE Standard 754 for additional information about
IEEE binary floating point notation.) COMPLEX() formats use a pair of REAL
values to denote the real and imaginary parts of the data.

All floating-point formats represent fractions in sign-magnitude notation, with the
binary radix point to the right of the most-significant bit. Fractions are assumed to
be normalized, and therefore the most-significant bit is not stored (this is called
"hidden bit normalization"). This bit is assumed to be 1 unless the exponent is O.
If the exponent equals 0, then the value represented is denormalized
(subnormal) or plus or minus zero.

Intrinsic REAL kinds are 4 (single precision), 8 (double precision), and 16
(extended precision), such as REAL(KIND=4) for single-precision floating-point
data. Intrinsic COMPLEX kinds are also 4 (single precision), 8 (double precision),
and 16 (extended precision).

To obtain the kind of a variable, use the KIND intrinsic function. You can also use
a size specifier, such as REAL*4, but be aware this is an extension to the Fortran
95 standard.

If you omit certain compiler options, the default sizes for REAL and COMPLEX
data declarations are as follows:

- For REAL data declarations without a kind parameter (or size specifier),
the default size is REAL (KIND=4) (same as REAL*4).

113

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

« For COMPLEX data declarations without a kind parameter (or size
specifier), the default data size is COMPLEX (KIND=4) (same as
COMPLEX*8).

To control the size of all REAL or COMPLEX declarations without a kind
parameter, use the -real _size 64 or-real _size 128 options; the default
is-real size 32.

You can explicitly declare the length of a REAL or a COMPLEX declaration using
a kind parameter, or specify DOUBLE PRECISION or DOUBLE COMPLEX. To
control the size of all DOUBLE PRECISION and DOUBLE COMPLEX
declarations, use the - doubl e_si ze 128 option; the default is - doubl e_si ze
64.

The following sections discuss floating-point data:

+ REAL(KIND=4) (Single Precision) Representation

« REAL(KIND=8) (Double Precision) Representation

+ REAL(KIND=16) (Extended Precision) Representation

« COMPLEX(KIND=4) (Single Precision) Representation
+ COMPLEX(KIND=8) (Double Precision) Representation
« COMPLEX(KIND=16 Representation

For information on reading or writing floating-point data other than native |IEEE
little endian data, see Converting Unformatted Numeric Data.

See also File fordef.for and Its Usage.

REAL(KIND=4) (REAL)

Representation

REAL(4) (same as REAL(KIND=4)) data occupies 4 contiguous bytes stored in
IEEE S_floating format. Bits are labeled from the right, 0 through 31, as shown
below.

A1 30 23 =2 0
o
J; EXPOHENT FRACTICON A
H

TH-a934 5 GE

The form of REAL(4) data is sign magnitude, with bit 31 the sign bit (O for positive
numbers, 1 for negative numbers), bits 30:23 a binary exponent in excess 127
notation, and bits 22:0 a normalized 24-bit fraction including the redundant most-
significant fraction bit not represented.

114

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

The value of data is in the approximate range: 1.17549435E-38 (normalized) to
3.40282347E38. The IEEE denormalized (subnormal) limit is 1.40129846E-45.
The precision is approximately one part in 2**23; typically 7 decimal digits.

REAL(KIND=8) (DOUBLE PRECISION)

Representation

REAL(8) (same as REAL(KIND=8)) data occupies 8 contiguous bytes stored in
IEEE T_floating format. Bits are labeled from the right, O through 63, as shown
below.

53 & =2 o 0
o
(]_; EXPOMENT FRACTION A
H

Ih-o3i6-GE

The form of REAL(8) data is sign magnitude, with bit 63 the sign bit (O for positive
numbers, 1 for negative numbers), bits 62:52 a binary exponent in excess 1023
notation, and bits 51:0 a normalized 53-bit fraction including the redundant most-
significant fraction bit not represented.

The value of data is in the approximate range: 2.2250738585072013D-308
(normalized) to 1.7976931348623158D308. The IEEE denormalized (subnormal)
limit is 4.94065645841246544D-324. The precision is approximately one part in
2**52; typically 15 decimal digits.

REAL(KIND=16) (EXTENDED

PRECISION) Representation

REAL(16) (same as REAL(KIND=16)) data occupies 16 contiguous bytes stored
in IEEE-style X_floating format. Bits are labeled from the right, O through 127, as
shown below.

127 128 112 111 d

a EXPONENT FRACTIGN A

TE-TLFIA-GE

The form of REAL(16) data is sign magnitude, with bit 127 the sign bit (O for
positive numbers, 1 for negative numbers), bits 126:112 a binary exponent in

115

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

excess 16383 notation, and bits 111:0 a normalized 113-bit fraction including the
redundant most-significant fraction bit not represented.

The value of data is in the approximate range:
6.4751751194380251109244389582276465524996Q-4966 to
1.189731495357231765085759326628007016196477Q4932. Unlike other
floating-point formats, there is little if any performance penalty from using
denormalized extended-precision numbers. This is because accessing
denormalized REAL (KIND=16) numbers does not result in an arithmetic trap (the
extended-precision format is emulated in software). The smallest normalized
number is 3.362103143112093506262677817321753Q-4932.

The precision is approximately one part in 2**112 or typically 33 decimal digits.

COMPLEX(KIND=4) (COMPLEX)

Representation

COMPLEX(4) (same as COMPLEX(KIND=4) and COMPLEX*8) data is 8
contiguous bytes containing a pair of REAL(4) values stored in IEEE S_floating
format. The low-order 4 bytes contain REAL(4) data that represents the real part
of the complex number. The high-order 4 bytes contain REAL(4) data that
represents the imaginary part of the complex number, as shown below.

31 20 23 22 o
REAL | T .
PART | EXPONENT FRACTION A

maGinagy | T _
PART | § EXPONENT FRAGTION Aed

Zk-331 +GE

The limits and underflow characteristics for REAL(4) apply to the two separate
real and imaginary parts of a COMPLEX(4) number. Like REAL(4) numbers, the
sign bit representation is 0 (zero) for positive numbers and 1 for negative
numbers.

COMPLEX(KIND=8) (DOUBLE

COMPLEX) Representation

COMPLEX(8) (same as COMPLEX(KIND=8) and COMPLEX*16) data is 16
contiguous bytes containing a pair of REAL(8) values stored in IEEE T _floating
format. The low-order 8 bytes contain REAL(8) data that represents the real part

116

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

of the complex data. The high-order 8 bytes contain REAL(8) data that
represents the imaginary part of the complex data, as shown below.

B3 &2 52 51 o
REAL | T .
PRAT | G EXPONENT FRAGTION A

maGINaRY | T
RART | G EXPONENT FRACTION 848

Zk-5515GE

The limits and underflow characteristics for REAL(8) apply to the two separate
real and imaginary parts of a COMPLEX(8) number. Like REAL(8) numbers, the
sign bit representation is 0 (zero) for positive numbers and 1 for negative
numbers.

COMPLEX(KIND=16) Representation

COMPLEX(16) (same as COMPLEX(KIND=16) or COMPLEX*32) data is 32
contiguous bytes containing a pair of REAL(16) values stored in IEEE-style
X_floating format. The low-order 16 bytes contain REAL(16) data that represents
the real part of the complex data. The high-order 16 bytes contain REAL(8) data
that represents the imaginary part of the complex data, as shown below.

127 126 112 111 0

REAL ?
PART

EXPOMNENT FRACTIGN A

PART EXPOMNENT FRACTION A+16

i
MAGIMARY ?
i

LJ-06E50

The limits and underflow characteristics for REAL(16) apply to the two separate
real and imaginary parts of a COMPLEX(16) number. Like REAL(16) numbers,
the sign bit representation is O (zero) for positive numbers and 1 for negative
numbers.

File fordef.for and Its Usage

The parameter file / opt /i ntel _fc_80/i ncl ude/ f or def . f or contains symbols
and INTEGER*4 values corresponding to the classes of floating-point
representations. Some of these classes are exceptional ones such as bit patterns
that represent positive denormalized numbers.

117

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

With this file of symbols and with the FP_CLASS intrinsic function, you have the

flexibility of identifying exceptional numbers so that, for example, you can replace
positive and negative denormalized numbers with true zero.

The following is a simple example of identifying floating-point bit representations:

i nclude 'fordef.for'

real *4 a

integer*4 class_of bits

a =57.0 I Bit pattern is a finite nunber

class_of _bits = fp_class(a)

if (class_of bits .eq. for_k fp_pos norm .or. &

class_of bits .eq. for_k fp_neg _norm) then

print *, a, ' is a non-zero and non-exceptional val ue

el se
print *, a, ' is zero or an exceptional value

end if

end

In this example, the symbol f or _k_f p_pos_nor min the file
/opt/intel _fc_80/include/fordef.for plusthe REAL*4 value 57.0 to the
FP_CLASS intrinsic function results in the execution of the first print statement.

The table below explains the symbols in the file
/opt/intel _fc_80/include/fordef.for and their corresponding floating-point
representations.

Symbols in File fordef.for

Symbol Name Class of Floating-Point Bit Representation
FOR_K_FP_SNAN Signaling NaN

FOR_K_FP_QNAN Quiet NaN

FOR_K_FP_POS_INF Positive infinity

FOR_K_FP_NEG_INF Negative infinity

FOR_K FP_POS NORM Positive normalized finite number

FOR_K FP_NEG NORM Negative normalized finite number

FOR_K _FP_POS DENORM | Positive denormalized number

FOR_K_FP_NEG_DENORM | Negative denormalized number

FOR_K FP_POS ZERO Positive zero

FOR_K FP_NEG_ZERO Negative zero

Another example of using file f or def . f or and intrinsic function FP_CLASS
follows. The goals of this program are to quickly read any 32-bit pattern into a
REAL*4 number from an unformatted file with no exception reporting and to
replace denormalized numbers with true zero:

118

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

i nclude 'fordef.for'
real *4 a(100)
integer*4 class_of _bits
! open an unformatted file as unit 1
read (1) a
doi =1, 100
class_of _bits = fp_class(a(i))
if (class_of _bits .eq. for_k fp_pos_denorm .or.

&
class_of _bits .eq. for_k fp_neg_denorm)
t hen
a(i) =0.0
end if
end do
close (1)
end

You can compile this program with any value of - f pen. Intrinsic function
FP_CLASS helps to find and replace denormalized numbers with zeroes before
the program can attempt to perform calculations on the denormalized numbers.
On the other hand, if this program did not replace denormalized numbers read
from unit 1 with zeroes and the program was compiled with - f pe0, then the first
attempted calculation on a denormalized number would result in a floating-point
exception.

File f or def . f or and intrinsic function FP_CLASS can work together to identify
NaNs. A variation of the previous example would contain the symbols
for_k_fp_snan and for_k_f p_gnan in the IF statement. A faster way to do this is
based on the intrinsic function ISNAN. One modification of the previous example,
using ISNAN, follows:

! The | SNAN function does not need file fordef.for
real *4 a(100)
! open an unformatted file as unit 1
|
read (1) a
doi =1, 100
if (isnan (a(i))) then

print *, 'Element ', i,

contai ns a NaN

end if
end do
close (1)
end

You can compile this program with any value of - f pen.

119

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

Character Representation

A character string is a contiguous sequence of bytes in memory, as shown
below.

CHAR A A
L]
L
L]
CHAR L Al
Lh-oE0sGE

A character string is specified by two attributes: the address A of the first byte of
the string, and the length L of the string in bytes. The length L of a string is in the
range 1 through 2,147,483,647 (2**31-1) .

Hollerith Representation

Hollerith constants are stored internally, one character per byte, as shown below.

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building

Applications
1 Byte
7 0
GHAR A
Z Bytes
15 a7 0
CHAR 2 CGHaR 1 A
4 Byes
21 2424, 1615 a7]
CHAR 4 CHAR 3 CHaR 2 CGHaR A A
8 Byes
15 87 o
CHAR 2 CHaR 1 A
CHAR 4 CHAR S a2
CHARG CHaR 5 At
CHoR & GHaR T s
62 55 55 48
RO REE

Converting Unformatted Data

Converting Unformatted Data

Overview

This section describes how you can use Intel® Fortran to read and write
nonnative unformatted numeric data.

See these topics:

Supported Native and Nonnative Numeric Formats
Limitations of Numeric Conversion

Methods of Specifying the Data Format: Overview

Porting Nonnative Data

121

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

Supported Native and Nonnative

Numeric Formats

Intel® Fortran supports the following little endian floating-point formats in
memory:

Floating-point size fFormat in memory
REAL(KIND=4) IEEE* S_floating
COMPLEX(KIND=4)

REAL(KIND=8) |IEEE T_floating
COMPLEX(KIND=8)

REAL(KIND=16 IEEE X_floating
COMPLEX(KIND=16)

If your program needs to read or write unformatted data files containing a
floating-point format that differs from the format in memory for that data size, you
can request that the unformatted data be converted.

Data storage in different computers uses a convention of either little endian or big
endian storage. The storage convention generally applies to numeric values that
span multiple bytes, as follows:

» Little endian storage occurs when:
o Theleast significant bit (LSB) value isin the byte with the lowest address.
o Themost significant bit (MSB) valueisin the byte with the highest
address.
o Theaddress of the numeric value is the byte containing the L SB.
Subsequent bytes with higher addresses contain more significant bits.
« Big endian storage occurs when:
o Theleast significant bit (LSB) value isin the byte with the highest
address.
o Themost significant bit (MSB) value isin the byte with the lowest
address.
o Theaddress of the numeric value is the byte containing the M SB.
Subsequent bytes with higher addresses contain less significant bits.

The following figure shows the difference between the two byte-ordering
schemes:

Little and Big Endian Storage of an INTEGER Value

122

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building

Applications
M L
5 5
B B
Little Endian
ButeOrder o010 0d11jpO0o01 0001|0001 0O00T T 01000
1003 1002 1001 1000
M L
5 5
B B
Big Endian
Buteﬂrder |[l[ll]1[ll]11|l]l]l]1[ll][li|l][ll]1[l[ll]1|11[lil]l][li|
1000 1001 1002 1003

Zk-BES44 -0FE

Moving unformatted data files between big endian and little endian computers
requires that the data be converted.

Intel Fortran provides the capability for programs to read and write unformatted
data (originally written using unformatted 1/0O statements) in several nonnative
floating-point formats and in big endian INTEGER or floating-point format.
Supported nonnative floating-point formats include VAX* little endian floating-
point formats supported by VAX FORTRAN, standard IEEE big endian floating-
point format found on most Sun Microsystems* systems and IBM RISC*
System/6000 systems, IBM floating-point formats (associated with the IBM's
System/370 and similar systems), and CRAY* floating-point formats.

Converting unformatted data instead of formatted data is generally faster and is
less likely to lose precision of floating-point numbers.

The native memory format includes little endian integers and little endian IEEE
floating-point formats, S_floating for REAL(KIND=4) and COMPLEX(KIND=4)
declarations, T_floating for REAL(KIND=8) and COMPLEX(KIND=8)
declarations, and IEEE X_floating for REAL(KIND=16) and COMPLEX(KIND=16)
declarations.

The keywords for supported nonnative unformatted file formats and their data
types are listed in the following table:

Nonnative Numeric Format Keywords and Supported Data Types

Keyword Description

BIG_ENDIAN Big endian integer data of the appropriate INTEGER size
(one, two, four, or eight bytes) and big endian IEEE
floating-point formats for REAL and COMPLEX single- and
double- and extended-precision numbers. INTEGER
(KIND=1) or INTEGER*1 data is the same for little endian
and big endian.

CRAY Big endian integer data of the appropriate INTEGER size

123

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

(one, two, four, or eight bytes) and big endian CRAY
proprietary floating-point format for REAL and COMPLEX
single- and double-precision numbers.

FDX Native little endian integers of the appropriate INTEGER
size (one, two, four, or eight bytes) and the following little
endian proprietary floating-point formats:

+ VAXF_float for REAL (KIND=4) and COMPLEX
(KIND=4)

+ VAX D_float for REAL (KIND=8) and COMPLEX
(KIND=8)

+ |EEE style X_float for REAL (KIND=16) and
COMPLEX (KIND=16)

FGX Native little endian integers of the appropriate INTEGER
size (one, two, four, or eight bytes) and the following little
endian proprietary floating-point formats:

+ VAXF_float for REAL (KIND=4) and COMPLEX
(KIND=4)

+ VAX G_float for REAL (KIND=8) and COMPLEX
(KIND=8)

+ |EEE style X_float for REAL (KIND=16) and
COMPLEX (KIND=16)

IBM Big endian integer data of the appropriate INTEGER size
(one, two, or four bytes) and big endian IBM proprietary
(System\370 and similar) floating-point format for REAL
and COMPLEX single- and double-precision numbers.

LITTLE_ENDIAN | Native little endian integers of the appropriate INTEGER
size (one, two, four, or eight bytes) and the following native
little endian IEEE floating-point formats:

+ S _float for REAL (KIND=4) and COMPLEX
(KIND=4)

« T_float for REAL (KIND=8) and COMPLEX
(KIND=8)

+ |EEE style X_float for REAL (KIND=16) and
COMPLEX (KIND=16)

NATIVE No conversion occurs between memory and disk. This is
the default for unformatted files.
VAXD Native little endian integers of the appropriate INTEGER

size (one, two, four, or eight bytes) and the following little

124

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

endian VAX proprietary floating-point formats:

. VAXF_float for REAL (KIND=4) and COMPLEX
(KIND=4)

. VAX D_float for REAL (KIND=8) and COMPLEX
(KIND=8)

« VAX H_float for REAL (KIND=16) and COMPLEX
(KIND=16)

VAXG Native little endian integers of the appropriate INTEGER
size (one, two, four, or eight bytes) and the following little
endian VAX proprietary floating-point formats:

.« VAX F_float for REAL (KIND=4) and COMPLEX

(KIND=4)

. VAX G_float for REAL (KIND=8) and COMPLEX
(KIND=8)

« VAX H_float for REAL (KIND=16) and COMPLEX
(KIND=16)

When reading a nonnative format, the nonnative format on disk is converted to
native format in memory. If a converted nonnative value is outside the range of
the native data type, a run-time message is displayed.

Limitations of Numeric Conversion

The Intel Fortran floating-point conversion solution is not expected to fulfill all
floating-point conversion needs.

For instance, data fields in record structure variables (specified in a
STRUCTURE statement) and data components of derived types (TYPE
statement) are not converted. When they are later examined as separate fields
by the program, they will remain in the binary format they were stored in on disk,
unless the program is modified. With EQUIVALENCE statements, the data type
of the variable named in the 1/O statement is used.

If a program reads an 1/O record containing multiple format floating-point fields
into a single variable (such as an array) instead of their respective variables, the
fields will not be converted. When they are later examined as separate fields by
the program, they will remain in the binary format they were stored in on disk,
unless the program is modified.

Methods of Specifying the Data Format

125

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

Methods of Specifying the Data

Format: Overview

There are six methods of specifying a nhonnative numeric format for unformatted
data:

+ Setting an environment variable for a specific unit number before thefileis
opened. The environment variable is named FORT_CONVERTN, where nisthe
unit number. See Environment Variable FORT_CONVERTN Method.

« Setting an environment variable for a specific file name extension before the file
isopened. The environment variable is named FORT_CONVERT .ext or
FORT_CONVERT _ext, where ext is the file name extension (suffix). See
Environment Variable FORT _CONVERT.ext or FORT _CONVERT _ext Method.

« Setting an environment variable for a set of units before any files are opened. The
environment variable isnamed F_ UFMTENDIAN. See Environment Variable
F_UFMTENDIAN Method.

« Specifying the CONVERT keyword in the OPEN statement for a specific unit
number. See OPEN Statement CONVERT Method.

« Compiling the program with an OPTIONS statement that specifiesthe
CONVERT=keyword qualifier. This method affects all unit numbers using
unformatted data specified by the program. See OPTIONS Statement Method.

« Compiling the program with the command-line- convert keywor d option,
which affects all unit numbers that use unformatted data specified by the program.
See Compiler Option -convert Method.

If none of these methods are specified, the native LITTLE_ENDIAN format is
assumed (no conversion occurs between disk and memory).

Any keyword listed in Supported Native and Nonnative Numeric Formats can be
used with any of these methods, except for the Environment Variable
F_UFMTENDIAN Method, which supports only LITTLE_ENDIAN and
BIG_ENDIAN.

If you specify more than one method, the order of precedence when you open a
file with unformatted data is to:

1. Check for an environment variable (FORT_CONVERTN) for the specified unit
number (appliesto any file opened on a particular unit).

2. Check for an environment variable (FORT_CONVERT .ext is checked before
FORT_CONVERT _ext) for the specified file name extension (appliesto all files
opened with the specified file name extension).

3. Check for an environment variable (F_UFMTENDIAN) for the specified unit
number (or for al units).

4. Check the OPEN statement CONVERT qualifier.

126

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

5. Check whether an OPTIONS statement with a CONV ERT=keyword qualifier was
present when the program was compiled.

6. Check whether the compiler option- convert keywor d was present when the
program was compiled.

Environment Variable

FORT CONVERTN Method

You can use this method to specify a hon-native numeric format for each
specified unit number. You specify the numeric format at run time by setting the
appropriate environment variable before an implicit or explicit OPEN to that unit
number.

When the appropriate environment variable is set when you open the file, the
environment variable is always used because this method takes precedence over
the other methods. For instance, you might use this method to specify that a unit
number will use a particular format instead of the format specified in the program
(perhaps for a one-time file conversion).

For example, assume you have a previously compiled program that reads
numeric data from unit 28 and writes it to unit 29 using unformatted 1/0O
statements. You want the program to read nonnative big endian (IEEE floating-
point) format from unit 28 and write that data in native little endian format to unit
29. In this case, the data is converted from big endian IEEE format to native little
endian IEEE memory format when read from unit 28, and then written without
conversion in native little endian IEEE format to unit 29.

Without requiring source code modification or recompilation of this program, the
following command sequence sets the appropriate environment variables before
running the program (/ usr/ user s/ | esl i e/ convi eee):

set env FORT_CONVERT28 Bl G_ENDI AN
set env FORT_CONVERT29 NATI VE
/usr/users/|eslielconvieee

The following figure shows the data formats used on disk and in memory when
the example file (/ usr/ users/| esli e/ convi eee) is run after the
environment variables are set.

Sample Unformatted File Conversion

127

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

MNative Memory Formats

Little Endian Integers and
Little Endian IEEE 5_float
and T_float Formats

Unit 25 Fead
Bigy Endlian IEEE
and Convvert to
Mative Formats

Unit 29; Do Mot Convert;
Write Mative Memory Formats
{Little Endlian IEEE}

| Unfarmatted Data Files on Disk I

This method takes precedence over other methods.

ZR-&326A-0E

Environment Variable

FORT CONVERT.ext or
FORT _CONVERT ext Method

You can use this method to specify a non-native numeric format for each
specified file name extension (suffix). You specify the numeric format at run time
by setting the appropriate environment variable before an implicit or explicit
OPEN to one or more unformatted files. You can use the format
FORT_CONVERT.ext or FORT_CONVERT _ext (where ext is the file extension
or suffix). The FORT_CONVERT.ext environment variable is checked before
FORT_CONVERT_ext environment variable (if ext is the same).

For example, assume you have a previously compiled program that reads
numeric data from one file and writes to another file using unformatted I/O
statements. You want the program to read nonnative big endian (IEEE floating-
point) format from a file with a .dat file extension extension and write that data in
native little endian format to a file with a extension of .data. In this case, the data
is converted from big endian IEEE format to native little endian IEEE memory
format (S_float and T_float) when read from file.dat, and then written without
conversion in native little endian IEEE format to the file with a suffix of .data,
assuming that environment variables FORT_CONVERT.DATA and
FORT_CONVERTN (for that unit number) are not defined.

Without requiring source code modification or recompilation of this program, the
following command sequence sets the appropriate environment variables before
running the program:

set env FORT_CONVERT. DAT BI G_ ENDI AN
[usr/ users/proj2/cvbi gend

128

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

The FORT_CONVERTN method takes precedence over this method. When the
appropriate environment variable is set when you open the file, the
FORT_CONVERT.ext or FORT_CONVERT_ext environment variable is used if a
FORT_CONVERTN environment variable is not set for the unit number.

The FORT_CONVERTnN and the FORT_CONVERT.ext or FORT_CONVERT _ext
environment variable methods take precedence over the other methods. For
instance, you might use this method to specify that a unit number will use a
particular format instead of the format specified in the program (perhaps for a
one-time file conversion).

You can set the appropriate environment variable using the format
FORT_CONVERT.ext or FORT_CONVERT_ext. Consider using the
FORT_CONVERT _ext form, because a dot (.) cannot be used for environment
variable names on certain Linux* command shells. If you do define both
FORT_CONVERT.ext and FORT_CONVERT _ext for the same extension (ext),
the file defined by FORT_CONVERT.ext is used.

Environment Variable

F UFMTENDIAN Method

This little-endian-to-big-endian conversion feature is intended for Fortran
unformatted input/output operations. It enables the development and processing
of files with big-endian data organization.

The feature also enables processing of the files developed on processors that
accept big-endian data format and producing the files for such processors on IA-
32-based little-endian systems.

This little-endian-to-big-endian conversion is accomplished by the following
operations:

« The WRITE operation converts little endian format to big endian format.
« The READ operation converts big endian format to little endian format.

Little-to-Big Endian Conversion Environment
Variable

In order to use the little-endian-to-big-endian conversion feature, specify the
numbers of the units to be used for conversion purposes by setting the
F_UFMTENDI AN environment variable. Then, the READ/WRITE statements that

129

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

use these unit numbers, will perform relevant conversions. Other READ/WRITE
statements will work in the usual way.

In the general case, the variable consists of two parts divided by a semicolon. No
spaces are allowed inside the F_UFMTENDI AN value. The variable has the
following syntax:

F_UFMTENDI AN=MODE | [MODE;] EXCEPTI ON

where:

MODE = big | little

EXCEPTION = big: ULIST | little:ULIST | ULIST
ULIST = U| ULIST, U

U = decinmal | decinmal -decim

« MODE defines current format of data, represented in the files; it can be
omitted.
The keyword | i t t | e means that the data has little endian format and will
not be converted. This is the default.
The keyword bi g means that the data has big endian format and will be
converted.

« EXCEPTI ONis intended to define the list of exclusions for MODE.
EXCEPTI ONkeyword (I i tt| e or bi g) defines data format in the files that
are connected to the units from the EXCEPTI ON list. This value overrides
MCDE value for the units listed. The EXCEPTI ON keyword and the colon can
be omitted. The default when the keyword is omitted is bi g.

« Each list member Uis a simple unit number or a number of units. The
number of list members is limited to 64.
deci mal is a non-negative decimal number less than 2%

The command line for the variable setting in the shell is:

Sh: export F_UFMIENDI AN=MODE; EXCEPTI ON

D‘ Note

The environment variable value should be enclosed in quotes if the
semicolon is present.

Another Possible Environment Variable Setting

The environment variable can also have the following syntax:

F_UFMTENDI AN=u[, u]

130

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

The command line for the variable setting in the shell is:

Sh: export F_UFMIENDI AN=ul, u]

Usage Examples
1. F_UFMTENDI AN=bi g

All input/output operations perform conversion from big-endian to little-
endian on READ and from little-endian to big-endian on WRI TE.

2. F_UFMTENDI AN="1i tt1 e; bi g: 10, 20"
or F_UFMIENDI AN=bi g: 10, 20
or F_UFMTENDI AN=10, 20

In this case, only on unit numbers 10 and 20 the input/output operations
perform big-little endian conversion.

3. F_UFMTENDI AN="big; little: 8"

In this case, on unit number 8 no conversion operation occurs. On all other
units, the input/output operations perform big-little endian conversion.

4. F_UFMTENDI AN=10- 20

Define 10, 11, 12 ... 19, 20 units for conversion purposes; on these units,
the input/output operations perform big-little endian conversion.

5. Assume you set F_UFMIENDI AN=10, 100 and run the following program.

i nteger*4 ccd
i nteger*8 cc8
i nteger*4 c4
i nteger*8 c8
c4 = 456
c8 = 789

C prepare little endian representation of data
open(11,file="lit.tnp' ,fornm" unformatted')
wite(ll) c8

wite(1ll) c4

cl ose(11)

C prepare big endian representation of data
open(10,file="big.tnmp' ,form" unformatted')

131

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

wite(1l0) c8
wite(l1l0) c4
cl ose(10)

C read big endian data and operate with them on
C little endian machine

open(100, file="big.tnmp',form" unformatted')
read(100) cc8
read(100) cc4

C Any operation with data, which have been read

C Co
cl ose(100)
st op

end

Now compare | i t.t np and bi g. t np files with the help of od utility.

>o0d -t x4 lit.tnp

0000000 00000008 00000315 00000000 00000008
0000020 00000004 000001c8 00000004

0000034

> o0d -t x4 big.tnp

0000000 08000000 00000000 15030000 08000000
0000020 04000000 c8010000 04000000

0000034

You can see that the byte order is different in these files.

OPEN Statement CONVERT Method

You can use this method to specify a hon-native numeric format for each
specified unit number. This method requires an explicit file OPEN statement to
specify the numeric format of the file for that unit number.

This method takes precedence over the OPTIONS statement and the compiler
option - convert keywor d method, but has a lower precedence than the
environment variable methods.

For example, the following source code shows how the OPEN statement would
be coded to read unformatted VAXD numeric data from unit 15, which might be
processed and possibly written in native little endian format to unit 20. (Tthe
absence of the CONVERT keyword or environment variables FORT _CONVERT?20,

132

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

FORT _CONVERT. dat , FORT _CONVERT _dat , or F_UFMTENDI AN indicates native
little endian data for unit 20.)

OPEN (CONVERT=' VAXD , FILE="graph3.dat', FORM=' UNFORVATTED , UNI T=15

OPEN (FI LE=' graph3_t.dat', FORME' UNFORVATTED , UNI T=20)

A hard-coded OPEN statement CONVERT keyword value cannot be changed
after compile time. However, to allow selection of a particular format at run time,
equate the CONVERT keyword to a variable and provide the user with a menu
that allows selection of the appropriate format (menu choice sets the variable)
before the OPEN occurs.

You can also select a particular format at run time for a unit number by using one
of the environment variable methods (FORT_CONVERTN,
FORT_CONVERT.ext, FORT_CONVERT_ext, or F_UFMTENDIAN), which take
precedence over the OPEN statement CONVERT keyword method.

OPTIONS Statement Method

You can only specify one numeric file format for all unformatted file unit numbers
using this method unless you also use one of the environment variable methods
or OPEN statement CONVERT keyword method.

You specify the numeric format at compile time and must compile all routines
under the same OPTIONS statement CONVERT keyword qualifier. You could
use one source program and compile it using differenti f ort commands to
create multiple executable programs that each read a certain format.

The environment variable methods and the OPEN statement CONVERT method
take precedence over this method. For instance, you might use the environment
variable FORT_CONVERTN method or OPEN statement CONVERT method to
specify each unit number that will use a format other than that specified using the
i fort option method.

This method takes precedence over the convert keywor d compiler option
method.

You can use OPTIONS statements to specify the appropriate floating-point
formats (in memory and in unformatted files) instead of using the corresponding
ifort command qualifiers. For example, to use VAX F_floating and G_floating as
the unformatted file format, specify the following OPTIONS statement:

133

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

OPTI ONS / CONVERT=VAXG

Because this method affects all unit numbers, you cannot read data in one format
and write it in another format, unless you use it in combination with one of the
environment variable methods or the OPEN statement CONVERT keyword
method to specify a different format for a particular unit number.

Compiler Option -convert Method

You can only specify one numeric format for all unformatted file unit numbers
using the compiler option - convert method unless you also use one (or more)
of the previous methods.

You specify the numeric format at compile time and must compile all routines
under the same - convert keywor d compiler option. You could use the same
source program and compile it using different i f ort commands to create
multiple executable programs that each read a certain format.

If you specify other methods, they take precedence over this method. For
instance, you might use the environment variable or OPEN statement CONVERT
keyword method to specify each unit number that will use a format different than
that specified using the - convert keywor d compiler option method for all
other unit numbers.

For example, the following command compiles program fi | e. f or to use VAX
D_floating (and F_floating) floating-point data for all unit numbers (unless
superseded by one of the other methods). Data is converted between the file
format and the little endian memory format (little endian integers, S_float and

T float little endian IEEE floating-point format). The created file, vconvert . exe,
can then be run:

ifort file.for -o vconvert -convert vaxd

Because this nethod affects all unformatted file unit nunmbers, you
cannot read data in one format and wite it in another file format
using the -convert keyword conpil er option nmethod alone. You can if you
use it in conbination with the environment variable nethods or the OPEN
statement CONVERT keyword nmethod to specify a different format for a
particul ar unit nunber

Porting Nonnative Data

Keep this information in mind when porting nonnative data:

134

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

« When porting source code along with the unformatted data, vendors might use
different units for specifying the record length (RECL specifier) of unformatted
files. While formatted files are specified in units of characters (bytes),

unformatted files are specified in longword units for Intel Fortran (default) and
some other vendors.

To allow you to specify the RECL units (bytes or longwords) for
unformatted files without source file modification, use the - assune

byt er ecl compiler option.

The Fortran 90 standard (American National Standard Fortran 90, ANSI
X3.198-1991, and International Standards Organization standard ISO/IEC
1539:1991), in Section 9.3.4.5, states: "If the file is being connected for
unformatted input/output, the length is measured in processor-dependent
units."

« Certain vendors apply different OPEN statement defaults to determine the record
type. The default record type (RECORDTY PE) with Intel Fortran depends on the
values for the ACCESS and FORM specifiers for the OPEN statement.

« Certain vendors use adifferent identifier for the logical data types, such as hex FF

instead of O1 to denote "true."
« Source code being ported may be coded specifically for big endian use.

Fortran 1/O

Fortran I/O Overview

See these topics:

Logical 1/0O Units

Types of 1/0O Statements

Forms of I/O Statements

Files and File Characteristics Overview
Accessing and Assigning Files

Default Pathnames and File Names
Using Preconnected Standard 1/O Files

Opening Files: OPEN Statement

135

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

Obtaining File Information: INQUIRE Statement

Closing a File: CLOSE Statement

Record Operations Overview

User-Supplied OPEN Procedures: USEROPEN Specifier

Format of Record Types

Logical I/O Units

In Intel Fortran, a logical unit is a channel through which data transfer occurs
between the program and a device or file. You identify each logical unit with a
logical unit number, which can be any nonnegative integer from 0 to a maximum
value of 2,147,483,647 (2**31-1). For example:

READ (2,100) I, X, Y

This READ statement specifies that data is to be entered from the device or file
corresponding to logical unit 2, in the format specified by the FORMAT statement
labeled 100. When opening a file, use the UNIT specifier to indicate the unit
number.

Fortran programs are inherently device-independent. The association between
the logical unit number and the physical file can occur at run-time. Instead of
changing the logical unit numbers specified in the source program, you can
change this association at run time to match the needs of the program and the
available resources. For example, before running the program, a script file can
set the appropriate environment variable or allow the terminal user to type a
directory path, file name, or both.

Use the same logical unit number specified in the OPEN statement for other 1/0O
statements to be applied to the opened file, such as READ and WRITE.

The OPEN statement connects a unit number with an external file and allows you
to explicitly specify file attributes and run-time options using OPEN statement
specifiers (all files except internal files are called external files).

Certain unit numbers are preconnected to standard devices. Unit number 5 is
associated with st di n, unit 6 with st dout , and unit O with st der r . At run time,
if units 5 and 6 are specified by a record I/O statement (such as READ or
WRITE) without having been explicitly opened by an OPEN statement, Intel
Fortran implicitly opens units 5, 6, and 0 and associates them with their

136

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building

Applications

respective operating system standard 1/O files (if the corresponding FORTN
environment variable is not set).

Types of I/O Statements

The table below lists the Intel Fortran I/O statements:

Category and
statement name

Description

File connection

OPEN

Connects a unit number with an external file and specifies
file connection characteristics.

CLOSE Disconnects a unit number from an external file.

File inquiry

DEFINE FILE Specifies file characteristics for a direct access relative file
and connects the unit number to the file, similar to an OPEN
statement. Provided for compatibility with compilers older
than FORTRAN-77.

INQUIRE Returns information about a named file, a connection to a

unit, or the length of an output item list.

Record position

BACKSPACE Moves the record position to the beginning of the previous
record (sequential access only).

DELETE Marks a record at the current record position in a relative file
as deleted (direct access only).

ENDFILE Writes an end-of-file marker after the current record
(sequential access only).

FIND Changes the record position in a direct access file. Provided
for compatibility with compilers older than FORTRAN-77.

REWIND Sets the record position to the beginning of the file

(sequential access only).

Record input

READ

Transfers data from an external file record or an internal file
to internal storage.

UNLOCK Frees a record in a relative or sequential file that was locked
by a previous READ statement.
ACCEPT Reads input from st di n. Unlike READ, ACCEPT only

provides formatted sequential input and does not specify a
unit number.

Record output

WRITE

Transfers data from internal storage to an external file
record or to an internal file.

137

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

REWRITE Transfers data from internal storage to an external file
record at the current record position (direct access relative
files only).

TYPE Writes record output to st dout (same as PRINT).

PRINT Transfers data from internal storage to st dout . Unlike
WRITE, PRINT only provides formatted sequential output
and does not specify a unit number.

In addition to the READ, WRITE, REWRITE, TYPE, and PRINT statements,
other 1/O record-related statements are limited to a specific file organization. For
instance:

- The DELETE statement only applies to relative files. (Detecting deleted
records is only available if the - virs option was specified when the
program was compiled.)

« The BACKSPACE statement only applies to sequential files open for
sequential access.

- The REWIND statement only applies to sequential files open for
sequential access and to direct access files.

« The ENDFILE statement only applies to certain types of sequential files
open for sequential access and to direct access files.

« The UNLOCK statement only applies to records in relative or sequential
files.

The file-related statements (OPEN, INQUIRE, and CLOSE) apply to any relative
or sequential file.

Forms of I/O Statements

Each type of record 1/0O statement can be coded in a variety of forms. The form
you select depends on the nature of your data and how you want it treated.
When opening a file, specify the form using the FORM specifier.

The following are the forms of 1/0 statements:

- Formatted I/O statements contain explicit format specifiers that are used
to control the translation of data from internal (binary) form within a
program to external (readable character) form in the records, or vice
versa.

+ List-directed and namelist I/O statements are similar to formatted
statements in function. However, they use different mechanisms to control
the translation of data: formatted I/O statements use explicit format
specifiers, and list-directed and namelist 1/0O statements use data types.

138

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

« Unformatted I/O statements do not contain format specifiers and therefore
do not translate the data being transferred (important when writing data
that will be read later).

Formatted, list-directed, and namelist I/O forms require translation of data from
internal (binary) form within a program to external (readable character) form in
the records. Consider using unformatted 1/O for the following reasons:

« Unformatted data avoids the translation process, so I/O tends to be faster.

- Unformatted data avoids the loss of precision in floating-point numbers
when the output data will subsequently be used as input data.

« Unformatted data conserves file storage space (stored in binary form).

To write data to a file using formatted, list-directed, or namelist 1/0O statements,
specify FORM="FORMATTED' when opening the file. To write data to a file
using unformatted 1/O statements, specify FORM="UNFORMATTED' when
opening the file.

Data written using formatted, list-directed, or namelist I/O statements is referred
to as formatted data; data written using unformatted 1/0O statements is referred to
as unformatted data.

When reading data from a file, you should use the same 1/O statement form that
was used to write the data to the file. For instance, if data was written to a file
with a formatted 1/0O statement, you should read data from that file with a
formatted I/O statement.

Although I/O statement form is usually the same for reading and writing data in a
file, a program can read a file containing unformatted data (using unformatted
input) and write it to a separate file containing formatted data (using formatted
output). Similarly, a program can read a file containing formatted data and write it
to a different file containing unformatted data.

You can access records in any sequential or relative file using sequential access.
For relative files and certain (fixed-length) sequential files, you can also access
records using direct access.

The table below shows the main record 1/0O statements, by category, that can be
used in Intel Fortran programs.

File Type, Access, and I/O Available Statements
Form
External file, sequential access
Formatted READ, WRITE, PRINT, ACCEPT, TYPE,
REWRITE

139

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

List-directed READ, WRITE, PRINT, ACCEPT, TYPE
Namelist READ, WRITE, PRINT, ACCEPT, TYPE
Unformatted READ, WRITE, REWRITE
External file, direct access
Formatted READ, WRITE, REWRITE
Unformatted READ, WRITE, REWRITE
Internal file
Formatted READ, WRITE
List-directed READ, WRITE
Unformatted None
Z/Note

You can use the REWRITE statement only for relative files, using direct
access.

Files and File Characteristics

Files and File Characteristics

Overview

See these topics:

File Organization

Internal Files and Scratch Files
Record Types

Record Overhead

Record Length

File Organization

File organization refers to the way records are physically arranged on a storage
device.

Intel Fortran supports two kinds of file organization:
« Sequential

140

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

+ Relative

The default file organization is always ORGANIZATION="SEQUENTIAL' for an
OPEN statement. The organization of a file is specified by means of the
ORGANIZATION specifier in the OPEN statement.

You can store sequential files on magnetic tape or disk devices, and can use
other peripheral devices, such as terminals, pipes, and line printers as sequential
files.

You must store relative files on a disk device.

Sequential Organization

A sequentially organized file consists of records arranged in the sequence in
which they are written to the file (the first record written is the first record in the
file, the second record written is the second record in the file, and so on). As a
result, records can be added only at the end of the file.

Sequential files are usually read sequentially, starting with the first record in the
file. Sequential files with a fixed-length record type that are stored on disk can
also be accessed by relative record number (direct access).

Relative Organization

Within a relative file are numbered positions, called cells. These cells are of fixed
equal length and are consecutively numbered from 1 to n, where 1 is the first cell,
and n is the last available cell in the file. Each cell either contains a single record

or is empty.

Records in a relative file are accessed according to cell number. A cell number is
a record's relative record number (its location relative to the beginning of the file).
By specifying relative record numbers, you can directly retrieve, add, or delete

records regardless of their locations (direct access). (Detecting deleted records is
only available if you specified the - vims option when the program was compiled.)

When creating a relative file, use the RECL value to determine the size of the

fixed-length cells. Within the cells, you can store records of varying length, as
long as their size does not exceed the cell size.

Internal Files and Scratch Files

Intel Fortran also supports two other types of files that are not file organizations:

141

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

« Internal files
« Scratch files

Internal Files

When you use sequential access, you can use an internal file to reference
character data in a buffer. The transfer occurs between internal storage and
internal storage (unlike external files), such as between character variables and a
character array.

An internal file consists of any of the following:

« Character variable

« Character-array element

« Character array

« Character substring

- Character array section without a vector subscript

Instead of specifying a unit number for the READ or WRITE statement, use an
internal file specifier in the form of a character scalar memory reference or a
character-array name reference.

An internal file is a designated internal storage space (variable buffer) of
characters that is treated as a sequential file of fixed-length records. To perform
internal I/O, use formatted and list-directed sequential READ and WRITE
statements. You cannot use file-related statements such as OPEN and INQUIRE
on an internal file (no unit number is used).

If an internal file is made up of a single character variable, array element, or
substring, that file comprises a single record whose length is the same as the
length of the character variable, array element, or substring it contains. If an
internal file is made up of a character array, that file comprises a sequence of
records, with each record consisting of a single array element. The sequence of
records in an internal file is determined by the order of subscript progression.

A record in an internal file can be read only if the character variable, array
element, or substring comprising the record has been defined (a value has been
assigned to the record).

Prior to each READ and WRITE statement, an internal file is always positioned at
the beginning of the first record.

Scratch Files

142

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

Scratch files are created by specifying STATUS="SCRATCH ' in an OPEN

statement. By default, these temporary files are created in (and later deleted
from) the directory specified in the OPEN statement DEFAULTFILE (if specified).

Record Types

Record type refers to whether records stored in a file are all the same length, are
of varying length, or use other conventions to define where one record ends and
another begins.

You can use fixed-length and variable-length record types with sequential or
relative files. You can use any of the record types with sequential files. Relative
files require the fixed-length record type.

When creating a new file or opening an existing file, specify one of the record
types described below.

See also Format of Record Types,

Fixed-Length Record Type
Records in a file must be the same length.
You must specify the record length (RECL) when the file is opened.

See also Fixed-Length Records.

Variable-Length Record Type

Records in a file can vary in length.

Record length information is stored as control bytes at the beginning and end of
each record.

See also Variable-Length Records.

Segmented Record Type

This pertains to a single logical record containing one or more unformatted
records of varying length, which can only be used for unformatted sequential
access.

143

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

Avoid the segmented record type when the application requires that the same file
be used for programs written in languages other than Fortran and for non-Intel
platforms.

See also Sesgmented Records.

Stream Record Type
A stream file is not grouped into records and uses no record delimiters.

Stream files contain character or binary data that is read or written to the extent
of the variables specified. Specify CARRIAGECONTROL="NONE ' for stream
files.

See also Stream Files.

Stream_LF and Stream_CR Record Type

Records are of varying length where the line feed (LF) or the carriage return (CR)
character serve as record delimiters (LF for Stream_LF files and CR for
Stream_CR files).

Stream_LF files must not contain embedded LF characters or use
CARRIAGECONTROL="LIST '. Instead, specify CARRIAGECONTROL="
NONE '. Stream_CR files must not contain embedded CR characters. The
Stream_LF record type is the usual record type for text files.

See also Stream_LF and Stream_CR Records.

Choosing a Record Type

Before you choose a record type, consider whether your application will use
formatted or unformatted data. If you are using formatted data, you can choose
any record type except segmented. If you are using unformatted data, avoid the
Stream, Stream_CR, and Stream_LF record types.

The segmented record type can only be used for unformatted sequential access
with sequential files. You should not use segmented records for files that are
read by programs written in languages other than Intel Fortran.

The Stream, Stream_CR, Stream_LF, and segmented record types can be used
only with sequential files.

144

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

The default record type (RECORDTYPE) depends on the values for the
ACCESS and FORM specifiers for the OPEN statement.

The record type of the file is not maintained as an attribute of the file. The results
of using a record type other than the one used to create the file are
indeterminate.

An 1/O record is a collection of fields (data items) that are logically related and
are usually processed as a unit.

Unless you specify nonadvancing I/O (ADVANCE specifier), each Intel Fortran
I/O statement transfers at least one record.

Record Overhead

Record overhead refers to bytes associated with each record that are used
internally by the file system and are not available when a record is read or
written. Knowing the record overhead helps when estimating the storage
requirements for an application. Although the overhead bytes exist on the
storage media, do not include them when specifying the record length with the
RECL specifier in an OPEN statement.

The various record types each require a different number of bytes for record
overhead, as described in the table below:

Record File Record Overhead

Type Organization

Fixed-length | Sequential None.

Fixed-length | Relative None if the - vns option was omitted (the
default). One byte if the - virs option was
specified.

Variable- Sequential Eight bytes per record.

length

Segmented | Sequential Four bytes per record. One additional padding
byte (space) is added if the specified record
size is an odd number.

Stream Sequential None required.

Stream_CR | Sequential One byte per record.

Stream_LF Sequential One byte per record.

Record Length

145

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

Use the RECL specifier to specify the record length.
The units used for specifying record length depend on the form of the data:

« Formatted files (FORM="'FORMATTED '): Specify the record length in
bytes.

« Unformatted files (FORM="UNFORMATTED '): Specify the record length
in 4-byte units, unless you specify the - assune byt er ecl option to
request 1-byte units.

For all but variable-length sequential records on 64-bit addressable systems, the
maximum record length is 2.147 billion bytes (2,147,483,647 minus the bytes for
record overhead). For variable-length sequential records on 64-bit addressable
systems, the theoretical maximum record length is about 17,000 gigabytes.
When considering very large record sizes, also consider limiting factors such as
system virtual memory.

Accessing and Assigning Files

Most I/O operations involve a disk file, keyboard, or screen display. Other
devices can also be used:

« Sockets can be read from or written to if a USEROPEN routine (usually
written in C) is used to open the socket.

« Pipes opened for read and write access block (wait until data is available)
if you issue a READ to an empty pipe.

- Pipes opened for read-only access return EOF if you issue a READ to an

empty pipe.

You can access the terminal screen or keyboard by using preconnected files.

Assigning Files to Logical Units

You can choose to assign files to logical units by using one of the following
methods:

« Using default values, such as a preconnected unit

« Supplying a file name (and possibly a directory) in an OPEN statement
« Using environment variables

Using Default Values

In the following example, the PRINT statement is associated with a preconnected
unit (st dout) by default.

146

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

PRI NT *, 100

The READ statement associates the logical unit 7 with the file f ort . 7 (because
the FILE specifier was omitted) by default:

OPEN (UNI T=7, STATUS=' NEW)
READ (7, 100)

Supplying a File Name in an OPEN Statement

For example:

OPEN (UNI T=7, FILE="FILNAM DAT', STATUS='QOLD)

The FILE specifier in an OPEN statement typically specifies only a file name
(such as t est dat a) or contains both a directory and file name (such as
[usr/proj/testdata).

The DEFAULTFILE specifier in an OPEN statement typically specifies a
pathname that contains only a directory (such as/ usr/ proj /) or both a
directory and file name (such as/ usr/ proj /t est dat a).

Implied OPEN

Performing an implied OPEN means that the FILE and DEFAULTFILE specifier
values are not specified and an environment variable is used, if present. Thus, if
you used an implied OPEN, or if the FILE specifier in an OPEN statement did not
specify a file name, you can use an environment variable to specify a file name
or a pathname that contains both a directory and file name.

Using Environment Variables

You can use shell commands to set the appropriate environment variable to a
value that indicates a directory (if needed) and a file name to associate a unit
with an external file.

Intel Fortran recognizes environment variables for each logical I/O unit number in
the form of FORTn, where n is the logical I/O unit number. If a file name is not
specified in the OPEN statement and the corresponding FORTn environment
variable is not set for that unit number, Intel Fortran generates a file name in the
formfort. n, where n is the logical unit number.

Implied Intel Fortran Logical Unit Numbers

147

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

The ACCEPT, PRINT, and TYPE statements, and the use of an asterisk (*) in
place of a unit number in READ and WRITE statements, do not include an
explicit logical unit number.

Each of these Fortran statements uses an implicit internal logical unit number
and environment variable. Each environment variable is in turn associated by
default with one of the Fortran file names that are associated with standard 1/0
files. The table below shows these relationships:

Intel Fortran Environment Environment Standard /O file
statement variable when - variable when name
vns specified - vis omitted

READ (*,f) iolist FOR_READ FORTS5 stdin

READ f,iolist FOR_READ FORTS5 stdin
ACCEPT f,iolist FOR_ACCEPT FORT5 stdin

WRITE (*,f) iolist | FOR_PRI NT FORT6 st dout

PRINT f,iolist FOR PRI NT FORT6 st dout

TYPE f,iolist FOR _TYPE FORT6 st dout

You can change the file associated with these Intel Fortran environment
variables, as you would any other environment variable, by means of the
environment variable assignment command. For example:

setenv FOR_READ /usr/users/smth/test. dat

After executing the preceding command, the environment variable for the READ
statement using an asterisk refers to file t est . dat in directory
[usr/users/smth.

Default Pathnames and File Names

Intel Fortran provides the following possible ways of specifying all or part of a file
specification (directory and file name), such as / usr/ proj /t est dat a:

« The FILE specifier in an OPEN statement typically specifies only a file
name (such ast est dat a) or contains both a directory and file name
(such as/usr/proj/testdata).

- The DEFAULTFILE specifier in an OPEN statement typically specifies a
pathname that contains only a directory (such as/ usr/ proj /) or both a
directory and file name (such as/ usr/ proj / t est dat a).

« If you used an implied OPEN or if the FILE specifier in an OPEN
statement did not specify a file name, you can use an environment
variable to specify a file name or a pathname that contains both a
directory and file name.

148

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

Examples of Applying Default Pathnames and File
Names
For example, for an implied OPEN of unit number 3, Intel Fortran would check

the environment variable FORT3. If the environment variable FORT3 was set, its
value is used. If it is not set, the system supplies the file name fort . 3.

In the following table, assume the current directory is / usr/ sm t h and the I/O
uses unit 1, as in the statement READ (1,100).

OPEN FILE OPEN FORT1 Resulting pathname
value DEFAULTFILE | environment

value variable value
not specified not specified not specified fusr/smth/fort.1
not specified not specified t est. dat fusr/smth/test. dat
not specified not checked fusr/tnp/t.dat |/usr/tnp/t.dat
not specified /tnp not specified [top/fort.1
not specified [t testdat a /tnp/testdata
not specified [usr l'ib/testdata lusr/lib/testdata
file.dat [usr/ group not checked [usr/group/file.dat
[tnp/file.dat | notchecked not checked /tnp/file.dat
file.dat not specified not specified fusr/smth/file.dat

When the resulting file pathname begins with a tilde character (~), C-shell-style
pathname substitution is used (regardless of what shell is being used), such as a
top-level directory (below the root). For additional information on tilde pathname
substitution, see csh(1).

Rules for Applying Default Pathnames and File
Names

Intel Fortran determines file name and the directory path based on certain rules.
It determines a file name string as follows:

- If the FILE specifier is present, its value is used.

- If the FILE specifier is not present, Intel Fortran examines the
corresponding environment variable. If the corresponding environment
variable is set, that value is used. If the corresponding environment
variable is not set, a file name in the form f or t . n is used.

Once Intel Fortran determines the resulting file name string, it determines the
directory (which optionally precedes the file name) as follows:

149

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

- If the resulting file name string contains an absolute pathname, it is used
and the DEFAULTFILE specifier, environment variable, and current
directory values are ignored.

« If the resulting file name string does not contain an absolute pathname,
Intel Fortran examines the DEFAULTFILE specifier and current directory
value: If the corresponding environment variable is set and specifies an
absolute pathname, that value is used. Otherwise, the DEFAULTFILE
specifier value, if present, is used. If the DEFAULTFILE specifier is not
present, Intel Fortran uses the current directory as an absolute pathname.

Using Preconnected Standard 1/O

Files

If you do not use an OPEN statement to open logical unit 5, 6, or 0 and do not
set the appropriate environment variable (FORTn), Intel Fortran at run time
implicitly opens (preconnected) units 5, 6, and 0 and associates them with the
following operating system standard 1/O files:

Unit | Environment Variable Equivalent Linux* Standard 1/O File
5 FORTS Standard input, st di n

6 FORT6 Standard output, st dout

0 FORTO Standard error, st der r

You can change these preconnected files by doing one of the following:

« Using an OPEN statement to open unit 5, 6, or 0. When you explicitly
OPEN a file for unit 5, 6, or 0, the OPEN statement keywords specify the
file-related information to be used instead of the preconnected standard
1/O file.

« Setting the appropriate environment variable (FORTnN) to redirect I/O to an
external file.

To redirect input or output from the standard preconnected files at run time, you
can set the appropriate environment variable or use the appropriate shell
redirection character in a pipe (such as > or <).

Opening Files: OPEN Statement

To open a file, you should use a preconnected file (such as for terminal output) or
explicitly open files with an OPEN statement. Although you can also implicitly
open a file, this prevents you from using the OPEN statement to specify the file
connection characteristics and other information.

150

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

OPEN Statement Specifiers

The OPEN statement connects a unit number with an external file and allows you
to explicitly specify file attributes and run-time options using OPEN statement
specifiers. Once you open a file, you should close it before opening it again
unless it is a preconnected file.

If you open a unit number that was opened previously (without being closed), one
of the following occurs:

« If you specify a file specification that does not match the one specified for
the original open, the Intel Fortran run-time system closes the file and then
reopens it. This resets the current record position for the second file.

« If you specify a file specification that matches the one specified for the
original open, the file is reconnected without the internal equivalent of the
CLOSE and OPEN. This lets you change one or more OPEN statement
run-time specifiers while maintaining the record position context.

You can use the INQUIRE statement to obtain information about whether or not a
file is opened by your program.

Especially when creating a new file using the OPEN statement, examine the
defaults (see the description of the OPEN statement in the Intel Fortran
Language Reference Manual) or explicitly specify file attributes with the
appropriate OPEN statement specifiers.

Specifiers for File a nd Unit Information
These specifiers identify file and unit information:

« UNIT specifies the logical unit number.

+ FILE (or NAME) and DEFAULTFILE specify the directory and/or file name
of an external file.

« STATUS or TYPE indicates whether to create a new file, overwrite an
existing file, open an existing file, or use a scratch file.

« STATUS or DISPOSE specifies the file existence status after CLOSE.

Specifiers for File and Record Characteristics
These specifiers identify file and record characteristics:

- ORGANIZATION indicates the file organization (sequential or relative).
- RECORDTYPE indicates which record type to use.

« FORM indicates whether records are formatted or unformatted.

« CARRIAGECONTROL indicates the terminal control type.

151

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

+ RECL or RECORDSIZE specifies the record size.
Specifier for Special F ile Open Routine

USEROPEN names the routine that will open the file to establish special context
that changes the effect of subsequent Intel Fortran 1/0O statements.

Specifiers for File Access, Processing, and Position
These specifiers identify file access, processing, and position:

« ACCESS indicates the access mode (direct or sequential).

« SHARED indicates that other users can access the same file and
activates record locking. Ignored in the current version of Intel Fortran.

- POSITION indicates whether to position the file at the beginning of file,
before the end-of-file record, or leave it as is (unchanged).

« ACTION or READONLY indicates whether statements will be used to only
read records, only write records, or both read and write records.

« MAXREC specifies the maximum record number for direct access.

« ASSOCIATEVARIABLE specifies the variable containing the next record
number for direct access.

Specifiers for Record Transfer Characteristics
These specifiers identify record transfer characteristics:

« BLANK indicates whether to ignore blanks in numeric fields.

- DELIM specifies the delimiter character for character constants in list-
directed or namelist output.

« PAD, when reading formatted records, indicates whether padding
characters should be added if the item list and format specification require
more data than the record contains.

« BLOCKSIZE specifies the block physical I1/0 buffer size.

« BUFFERCOUNT specifies the number of physical 1/0 buffers.

+ CONVERT specifies the format of unformatted numeric data.

Specifiers for Error-Handling Capabilities
These specifiers are used for error handling:
- ERR specifies a label to branch to if an error occurs.

- |OSTAT specifies the integer variable to receive the error (IOSTAT)
number if an error occurs.

Specifier for File Close Action

152

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

DISPOSE identifies the action to take when the file is closed.

Coding File Locations in an OPEN Statement

You can use the FILE and DEFAULTFILE specifiers of the OPEN statement to
specify the complete definition of a particular file to be opened on a logical unit.
(The Language Reference Manual describes the OPEN statement in greater
detail.)

For example:

OPEN (UNI T=4, FILE="/usr/users/smth/test.dat"',
STATUS=' OLD)

The file t est . dat in directory / usr/ user s/ sm t h is opened on logical unit 4.
No defaults are applied, because both the directory and file name were specified.
The value of the FILE specifier can be a character constant, variable, or
expression.

In the following interactive example, the user supplies the file name and the
DEFAULTFILE specifier supplies the default values for the full pathname string.
The file to be opened isin/ usr/ user s/ sni t h and is concatenated with the file
name typed by the user into the variable DOC:

CHARACTER(LEN=9) DOC

WRITE (6,*) 'Type file nane '’

READ (5,*) DOC

OPEN (UNI T=2, FI LE=DCC,

DEFAULTFI LE=' /usr/users/smth', STATUS=' OLD)

A slash is appended to the end of the default file string if it does not have one.

Obtaining File Information: INQUIRE

Statement

The INQUIRE statement returns information about a file and has three forms:

« Inquiry by unit
« Inquiry by file name
« Inquiry by output item list

Inquiry by Unit

153

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

An inquiry by unit is usually done for an opened (connected) file. An inquiry by
unit causes the Intel Fortran RTL to check whether the specified unit is
connected or not. One of the following occurs, depending on whether the unit is
connected or not:

If the unit is connected:

« The EXIST and OPENED specifier variables indicate a true value.

« The pathname and file name are returned in the NAME specifier variable
(if the file is named).

« Other information requested on the previously connected file is returned.

« Default values are usually returned for the INQUIRE specifiers also
associated with the OPEN statement.

« The RECL value unit for connected formatted files is always 1-byte units.
For unformatted files, the RECL unit is 4-byte units, unless you specify the
-assune byt erecl option to request 1-byte units.

If the unit is not connected:

« The OPENED specifier indicates a false value.

« The unit NUMBER specifier variable is returned as a value of -1.

« Any other information returned will be undefined or default values for the
various specifiers.0

For example, the following INQUIRE statement shows whether unit 3 has a file
connected (OPENED specifier) in logical variable |_OPENED, the name (case-
sensitive) in character variable |_NAME, and whether the file is opened for
READ, WRITE, or READWRITE access in character variable |_ACTION:

| NQUI RE (3, OPENED=I _OPENED, NAME=] _NAME, ACTI ON=I _ACTI ON)

Inquiry by File Name

An inquiry by name causes the Intel Fortran RTL to scan its list of open files for a
matching file name. One of the following occurs, depending on whether a match
occurs or not:

If a match occurs:

- The EXIST and OPENED specifier variables indicate a true value.

« The pathname and file name are returned in the NAME specifier variable.

« The UNIT number is returned in the NUMBER specifier variable.

- Other information requested on the previously connected file is returned.

- Default values are usually returned for the INQUIRE specifiers also
associated with the OPEN statement.

154

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

« The RECL value unit for connected formatted files is always 1-byte units.
For unformatted files, the RECL unit is 4-byte units, unless you specify the
-assune byt erecl option to request 1-byte units.

If no match occurs:

« The OPENED specifier variable indicates a false value.

« The unit NUMBER specifier variable is returned as a value of -1.

« The EXIST specifier variable indicates (true or false) whether the named
file exists on the device or not.

- If the file does exist, the NAME specifier variable contains the pathname
and file name.

« Any other information returned will be default values for the various
specifiers, based on any information specified when calling INQUIRE.

The following INQUIRE statement returns whether the file named | og fil eis
connected in logical variable I_OPEN, whether the file exists in logical variable
|_EXIST, and the unit number in integer variable |_NUMBER:

| NQUI RE (FILE='10g_file', OPENED=I_ OPEN, EXI ST=l EXI ST,
NUVBER=I _ NUVBER)

Inquiry by Output Item List

Unlike inquiry by unit or inquiry by name, inquiry by output item list does not
attempt to access any external file. It returns the length of a record for a list of
variables that would be used for unformatted WRITE, READ, and REWRITE
statements. The following INQUIRE statement returns the maximum record
length of the variable list in variable | RECLENGTH. This variable is then used to
specify the RECL value in the OPEN statement:

| NQUI RE (| OLENGTH=I RECLENGTH) A, B, H
OPEN (FILE='test.dat', FORVE' UNFORVATTED , RECL=| RECLENGTH,
UNI T=9)

For an unformatted file, the RECL value is returned using 4-byte units, unless
you specify the - assunme byt er ecl option to request 1-byte units.

Closing a File: CLOSE Statement

Usually, any external file opened should be closed by the same program before it
completes. The CLOSE statement disconnects the unit and its external file. You
must specify the unit number (UNIT specifier) to be closed.

155

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

You can also specify:

« Whether the file should be deleted or kept (STATUS specifier)
« Error handling information (ERR and IOSTAT specifiers)

To delete a file when closing it:

- Inthe OPEN statement, specify the ACTION keyword (such as
ACTION="READ"). Avoid using the READONLY keyword, because a file
opened using the READONLY keyword cannot be deleted when it is
closed.

« Inthe CLOSE statement, specify the keyword STATUS='DELETE".

If you opened an external file and did an inquire by unit, but do not like the
default value for the ACCESS specifier, you can close the file and then reopen it,
explicitly specifying the ACCESS desired.

There usually is no need to close preconnected units. Internal files are neither
opened nor closed.

Record Operations

Record Operations Overview

See these topics:

Record I/O Statement Specifiers

Record Access

File Sharing

Specifying the Initial Record Position
Advancing and Nonadvancing Record 1/0

Record Transfer

Record I/O Statement Specifiers

After you open a file or use a preconnected file, you can use the following
statements:

156

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

+ READ, WRITE, ACCEPT, and PRINT to perform record 1/O.

« BACKSPACE, ENDFILE, and REWIND to set record position within the
file.

« DELETE, REWRITE, TYPE, and FIND to perform various operations.

The record 1/0O statement must use the appropriate record I/O form (formatted,
list-directed, namelist, or unformatted).

You can use the following specifiers with the READ and WRITE record I/O
statements:

« UNIT specifies the unit number to or from which input or output will occur.

- END specifies a label to branch to if end-of-file occurs; only applies to
input statements on sequential files.

« ERR specifies a label to branch to if an error occurs.

« |IOSTAT specifies an integer variable to contain the error number if an
error occurs.

« FMT specifies a label of a FORMAT statement or character data
specifying a FORMAT.

« NML specifies the name of a NAMELIST.

+ REC specifies a record number for direct access.

When using nonadvancing /O, use the ADVANCE, EOR, and SIZE specifiers.

When using the REWRITE statement, you can use the UNIT, FMT, ERR, and
IOSTAT specifiers.

Record Access

Record access refers to how records will be read from or written to a file,
regardless of the file's organization. Record access is specified each time you
open a file; it can be different each time. The type of record access permitted is
determined by the combination of file organization and record type.

For instance, you can:

« Add records to a sequential file with ORGANIZATION="SEQUENTIAL '
and POSITION="APPEND ' (or use ACCESS="APPEND ").

« Add records sequentially by using multiple WRITE statements, close the
file, and then open it again with ORGANIZATION="SEQUENTIAL 'and
ACCESS="'SEQUENTIAL ' (or ACCESS="DIRECT ' if the sequential file
has fixed-length records).

Sequential Access

157

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

Sequential access transfers records sequentially to or from files or 1/0O devices
such as terminals. You can use sequential I/O with any type of supported file
organization and record type.

If you select sequential access mode for files with sequential or relative
organization, records are written to or read from the file starting at the beginning
of the file and continuing through it, one record after another. A particular record
can be retrieved only after all of the records preceding it have been read; new
records can be written only at the end of the file.

Direct Access

Direct access transfers records selected by record number to and from either
sequential files stored on disk with a fixed-length record type or relative
organization files.

If you select direct access mode, you can determine the order in which records
are read or written. Each READ or WRITE statement must include the relative
record number, indicating the record to be read or written.

You can directly access a sequential disk file only if it contains fixed-length
records. Because direct access uses cell numbers to find records, you can enter
successive READ or WRITE statements requesting records that either precede
or follow previously requested records. For example, the first of the following
statements reads record 24; the second reads record 10:

READ (12, REC=24) |
READ (12, REC=10) J

Limitations of Record Access by File Organization
and Record Type
You can use both access modes on sequential and relative files. However, direct

access to a sequential organization file can only be done if the file resides on
disk and contains fixed-length records.

The table below summarizes the types of access permitted for the various
combinations of file organizations and record types.

Record Type |Sequential Access? Qirect Access?

Sequential file organization

Fixed Yes Yes
Variable Yes No
Segmented Yes No

158

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building

Applications
Stream Yes No
Stream_CR Yes No
Stream_LF Yes No
Relative file organization
Fixed | Yes Yes

f} Note

Direct access and relative files require that the file resides on a disk device.

File Sharing

Depending on the value specified by the ACTION (or READONLY) specifier in
the OPEN statement, the file will be opened by your program for reading, writing,
or both reading and writing records. This simply checks that the program itself
executes the type of statements intended.

For performance reasons, record locking and shared-file checking are not
supported by Intel Fortran. When you open the file, access is always granted,
regardless of whether:

- The OPEN statement SHARED specifier was specified
« Other processes have already opened the file

You might open a file for writing records (or reading and writing records) and
know another process might simultaneously have the file open and be writing
records. In this case, you need to coordinate access times among those
processes to handle the possibility of simultaneous WRITE and REWRITE
statements on the same record positions.

Specifying the Initial Record Position

When you open a disk file, you can use the OPEN statement POSITION specifier
to request one of the following initial record positions within the file:

« The initial position before the first record (POSITION="REWIND'). A
sequential access READ or WRITE statement will read or write the first
record in the file.

« A point beyond the last record in the file (POSITION="APPEND), just
before the end-of-file record, if one exists. For a new file, this is the initial
position before the first record (same as 'REWIND'). You might specify
'APPEND' before you write records to an existing sequential file using
sequential access.

159

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

« The current position (POSITION="ASIS"). This is usually used only to
maintain the current record position when reconnecting a file. The second
OPEN specifies the same unit number and specifies the same file name
(or omits it), which leaves the file open, retaining the current record
position.

However, if the second OPEN specifies a different file name for the same unit
number, the current file will be closed and the different file will be opened.

The following I/O statements allow you to change the current record position:

« REWIND sets the record position to the initial position before the first
record. A sequential access READ or WRITE statement would read or
write the first record in the file.

+ BACKSPACE sets the record position to the previous record in a file.
Using sequential access, if you wrote record 5, issued a BACKSPACE to
that unit, and then read from that unit, you would read record 5.

- ENDFILE writes an end-of-file marker. This is typically done after writing
records using sequential access just before you close the file.

Unless you use nonadvancing I/O, reading and writing records usually advances
the current record position by one record. More than one record might be
transferred using a single record 1/O statement.

Advancing and Nonadvancing Record

After you open a file, if you omit the ADVANCE specifier (or specify ADVANCE=
'YES') in READ and WRITE statements, advancing 1/0O (normal FORTRAN-77
I/0O) will be used for record access. When using advancing 1/O:

« Record I/O statements transfer one entire record (or multiple records).
« Record I/O statements advance the current record position to a position
before the next record.

You can request nonadvancing I/O for the file by specifying the ADVANCE="NO
' specifier in a READ and WRITE statement. You can use nonadvancing I/O only
for sequential access to external files using formatted I/O (not list-directed or
namelist).

When you use nonadvancing I/O, the current record position does not change,

and part of the record might be transferred, unlike advancing I/O where one
entire record or records are always transferred.

160

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

You can alternate between advancing and nonadvancing 1/0O by specifying
different values for the ADVANCE specifier (' YES 'and ' NO ') in the READ and
WRITE record I/O statements.

When reading records with either advancing or nonadvancing 1/O, you can use
the END specifier to branch to a specified label when the end of the file is read.

Because nonadvancing 1/0O might not read an entire record, it also supports an
EOR specifier to branch to a specified label when the end of the record is read. If
you omit the EOR and the IOSTAT specifiers when using nonadvancing 1/O, an
error results when the end-of-record is read.

When using nonadvancing input, you can use the SIZE specifier to return the
number of characters read. For example, in the following READ statement,
SIZE=X (where variable X is an integer) returns the number of characters read in
X and an end-of-record condition causes a branch to label 700:

150 FORVAT (F10.2, F10.2, 16)
READ (UNI T=20, FMr=150, SIZE=X, ADVANCE=' NO , EOR=700)
A F |

Record Transfer

I/O statements transfer all data as records. The amount of data that a record can
contain depends on the following circumstances:

« With formatted I/O (except for fixed-length records), the number of items in
the 1/0 statement and its associated format specifier jointly determine the
amount of data to be transferred.

« With namelist and list-directed output, the items listed in the NAMELIST
statement or I/O statement list (in conjunction with the NAMELIST or list-
directed formatting rules) determine the amount of data to be transferred.

« With unformatted I/O (except for fixed-length records), the 1/0O statement
alone specifies the amount of data to be transferred.

« When you specify fixed-length records (RECORDTYPE= "FIXED"), all
records are the same size. If the size of an I/O record being written is less
than the record length (RECL), extra bytes are added (padding).

Typically, the data transferred by an 1/O statement is read from or written to a
single record. It is possible, however, for a single I/O statement to transfer data
from or to more than one record, depending on the form of 1/0 used.

Input Record Transfer

161

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

When using advancing /O, if an input statement specifies fewer data fields (less
data) than the record contains, the remaining fields are ignored.

If an input statement specifies more data fields than the record contains, one of
the following occurs:

« For formatted input using advancing I/O, if the file was opened with
PAD='YES', additional fields are read as spaces. If the file is opened with
PAD='NQ', an error occurs (the input statement should not specify more
data fields than the record contains).

« For formatted input using nonadvancing I/0 (ADVANCE='NQ’), an end-of-
record (EOR) condition is returned. If the file was opened with PAD="YES',
additional fields are read as spaces.

« For list-directed input, another record is read.

« For NAMELIST input, another record is read.

- For unformatted input, an error occurs.

Output Record Transfer

If an output statement specifies fewer data fields than the record contains (less
data than required to fill a record), the following occurs:

« With fixed-length records (RECORDTYPE="FIXED "), all records are the
same size. If the size of an I/O record being written is less than the record
length (RECL), extra bytes are added (padding) in the form of spaces (for
a formatted record) or zeros (for an unformatted record).

« With other record types, the fields present are written and those omitted
are not written (might result in a short record).

If the output statement specifies more data than the record can contain, an error
occurs, as follows:

« With formatted or unformatted output using fixed-length records, if the
items in the output statement and its associated format specifier result in a
number of bytes that exceeds the maximum record length (RECL), an
error occurs.

« With formatted or unformatted output not using fixed-length records, if the
items in the output statement and its associated format specifier result in a
number of bytes that exceeds the maximum record length (RECL), the
Intel Fortran RTL attempts to increase the RECL value and write the
longer record. To obtain the RECL value, use an INQUIRE statement.

« For list-directed output and namelist output, if the data specified exceeds
the maximum record length (RECL), another record is written.

162

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

User-Supplied OPEN Procedures:

USEROPEN Specifier

You can use the USEROPEN specifier in an Intel Fortran OPEN statement to
pass control to a routine that directly opens a file. The called routine can use
system calls or library routines to open the file and establish special context that
changes the effect of subsequent Intel Fortran I/O statements.

The Intel Fortran RTL I/O support routines call the USEROPEN function in place
of the system calls usually used when the file is first opened for I/O. The
USEROPEN specifier in an OPEN statement specifies the name of a function to
receive control. The called function must open the file (or pipe) and return the file
descriptor of the file when it returns control to the RTL.

When opening the file, the called function usually specifies options different from
those provided by a normal OPEN statement.

You can obtain the file descriptor from the Intel Fortran RTL for a specific unit
number with the get f d routine.

Although the called function can be written in other languages (such as Fortran),
C is usually the best choice for making system calls, such as open or create.

Syntax and Behavior of the USEROPEN Specifier

The USEROPEN specifier for the OPEN statement has the form:

USEROPEN = functi on- name

functi on- name represents the name of an external function. In the calling
program, the function must be declared in an EXTERNAL statement. For
example, the following Intel Fortran code might be used to call the USEROPEN
procedure UOPEN (known to the linker as uopen_):

EXTERNAL UGOPEN
| NTEGER UCPEN

OPEN (UNI T=10, FILE='/usr/test/data’, STATUS=' NEW,
USEROPEN=UOPEN)

163

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

During the OPEN statement, the uopen_ function receives control. The function
opens the file, may perform other operations, and subsequently returns control
(with the file descriptor) to the RTL.

If the USEROPEN function is written in C, declare it as a C function that returns a
4-byte integer (i nt) result to contain the file descriptor. For example:

i nt uopen_ ((1)
char *file_nane, (2)
i nt *open_f I ags, (3)
i nt *creat e_node, (4)
i nt *[un, (5)
i nt file_length); (6)

The function definition and the arguments passed from the Intel Fortran RTL are
as follows:

1. The function must be declared as a 4-byte integer (i nt).

2. The first argument is the pathname (includes the file name) to be opened.

3. The open flags are described in the header file
[usr/include/sys/file.horopen(2).

4. The create mode (protection needed when creating a file) is described in

open(2).

The fourth argument is the logical unit number.

The fifth (last) argument is the pathname length (hidden length argument

of the pathname).

oo

Of the arguments, the open system call (see open(2)) requires the passed
pathname, the open flags (that define the type access needed, whether the file
exists, and so on), and the create mode. The logical unit number specified in the
OPEN statement is passed in case the USEROPEN function needs it. The
hidden length of the pathname is also passed.

When creating a new file, the create system call might be used in place of open
(see creat e(2)). You can usually use other appropriate system calls or library
routines within the USEROPEN function.

In most cases, the USEROPEN function modifies the open flags argument
passed by the Intel Fortran RTL or uses a new value before the open (or create)
system call. After the function opens the file, it must return control to the RTL.

If the USEROPEN function is written in Fortran, declare it as a FUNCTION with

an INTEGER (KIND=4) result, perhaps with an interface block. In any case, the
called function must return the file descriptor as a 4-byte integer to the RTL.

164

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

If your application requires that you use C to perform the file open and close, as
well as all record operations, call the appropriate C procedure from the Intel
Fortran program without using the Fortran OPEN statement.

Restrictions of Called USEROPEN Functions

The Intel Fortran RTL uses exactly one file descriptor per logical unit, which must
be returned by the called function. Because of this, only certain system calls or
library routines can be used to open the file.

System calls and library routines that do not return a file descriptor include

nmknod (see nknod(2)) and f open (see f open(3)). For example, the f open
routine returns a file pointer instead of a file descriptor.

Example USEROPEN Program and Function

The following Intel Fortran code calls the USEROPEN function named UOPEN:

EXTERNAL UGPEN
| NTEGER UCPEN

OPEN (UNI T=1, FI LE=" ex1. dat ', STATUS=" NEW , USEROPEN=UCPEN,
ERR=9, | OSTAT=er r num

If the defaulti f ort options are used, the external name is passed using
lowercase letters with an appended trailing underscore (_). In the preceding

example, the external function UOPEN would be known as uopen__ to the linker
and must be declared in C as uopen_.

Compiling and Linking the C and Intel Fortran Programs

Use a single i f ort command to compile the called uopen_ C function
uopen_. ¢ and the Intel Fortran calling program ex1. f . The same command
also links both object files by using the appropriate libraries to create the file
a. out file, as follows:

ifort ex1.f uopen_.c

Source Code for the C Function and Header File

The following example shows the C language function called uopen_ and its
associated header file.

165

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

/*
** File: uopen.h -- header file for uopen_.c
*/

#i f ndef UCOPEN
#defi ne UOPEN 1

/*

* *

** Function Prototypes
* %

*/

i nt uopen_ (

char *file_nane, /* access read: name of the file
to open. */

i nt *open_f 1l ags, /* access read: READ/ WRI TE, see
file.h or open(2)*/

i nt *create node, /* access read: set if newfile
(to be created).*/

i nt *[un, /* access read: logical unit file
opened on. */
int file_length); /* access read: nunber of

characters in file_name*/
#endi f

/* End of file uopen.h */

/~k
** File: uopen_.c
*/

/*

** This routine opens a file using data passed by Intel
Fortran RITL.

* %

** | NCLUDE FI LES

*/

#i ncl ude <sys/types. h>

#i ncl ude <sys/stat. h>

#i ncl ude <sys/file.h>
#i ncl ude "uopen. h"/* Include file for this nodule */

int uopen_ (file_nane, open_flags, create_node, |un,
file_ |l ength)

/*

166

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

** Open a file using the paranmeters passed by the calling
I nt el

*x Fortran program

* %

** Formal Paraneters:

*/
char *file_nane; /* access read: nanme of the file to
open. */

i nt *open_f | ags; /* access read: READ/WRITE, see file.h
*/

i nt *create_node; /* access read: set if newfile (to be
created). */

i nt *| un; /* access read: logical unit nunber
file opened on. */
i nt file_length; /* access read: nunber of characters in

file name. */

/*

** Function Val ue/ Conpl eti on Code

* *

** \Whatever is returned by open is imediately returned to
t he

** Fortran OPEN. The returned value is the foll ow ng:

*x value >= 0 is a valid fd.

** value < 0 is an error.

* %

** Mdify open flags (logical OR) to specify the file be
opened for

** wite access only, with records appended at the end
(such as

** witing to a shared log file).

*/

{

i nt result ; /* Function result value */
*open_flags =

O _CREAT

O WRONLY

O_APPEND;
result = open (file_name, *open_flags, *create_node)
return (result) ; [* return file descriptor

or error */

}/* End of routine uopen_ */

167

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

/* End of file uopen_.c */

Source Code for the Calling Intel Fortran Program

The following example shows the Fortran program that calls the uopen_ C
function and then performs 1/O.

C

C Program EX1 opens a file using USEROPEN and wites
records to it.

C It closes and re-opens the file (w thout USEROPEN) and
reads 10 records.
PROGRAM EX1
EXTERNAL UOPEN I The USEROPEN f uncti on.
| NTEGER ERRNUM CTR, |
1 FORMAT (1)
ERRNUM = 0O
WRI TE (6,*) 'EX1. Access data using formatted 1/0QO"
VWRITE (6,*) 'EX1. Open file with USEROPEN and put sone

data init.'

OPEN (UNI T=1, FILE="exl.dat', STATUS="NEW,

USEROPEN=UCPEN,
& ERR=9, & | OSTAT=errnum
DO CTR=1, 10
WRITE (1,1) CIR
END DO

168

VWRI TE (6,*) 'EX1. O ose and re-open w thout USEROPEN. '
CLOSE (UNI T=1)

OPEN (UNI T=1, FILE="exl.dat', STATUS=' OLD ,
FORM=' FORVATTED , & ERR=99, & | OSTAT=errnum

WRI TE (6,*) '"EX1l. Read and display what is in file.'
DO CTR=1, 10
READ (1,1) i
WRI TE (6,*) i
END DO
WRI TE (6,*) '"EX1. Successful if 10 records shown.'

CLOSE (UNI T=1, STATUS=' DELETE')

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

STOP

9 WRITE (6,*) "EX1. Error on USEROPEN is ', errnum
STOP

99 WRITE (6,*) "EX1. Error on 2nd open is ', errnum

END PROGRAM EX1

Format of Record Types

Fixed-Length Records

When you specify fixed-length records, all records in the file contain the same
number of bytes. When you open a file that is to contain fixed-length records, you
must specify the record size by using the RECL specifier. A sequentially
organized file opened for direct access must contain fixed-length records, to
allow the record position in the file to be computed correctly.

For relative files, the layout and overhead of fixed-length records depend on
whether or not the program accessing the file was compiled with the - vins
option.

For relative files where the - vis option was omitted (the default), each record
has no control information.

For relative files where the - virs option was specified, each record has one byte
of control information at the beginning of the record.

The figure below shows the record layout of fixed-length records:

For all sequential files and For relative files where the —vms option was omitted:

zer Data

| Record length {RECL=value) |

For relative files where the -vms option was specified:

zer Data

[1] Fecord length (RECL=value) |

Z2k-9819-0E

Variable-Length Records
169

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

Variable-length records can contain any number of bytes up to a specified
maximum record length, and apply only to sequential files.

Variable-length records are prefixed and suffixed by 4 bytes of control
information containing length fields. The trailing length field allows a
BACKSPACE request to skip back over records efficiently. The 4-byte integer
value stored in each length field indicates the number of data bytes (excluding
overhead bytes) in that particular variable-length record.

The character count field of a variable-length record is available when you read
the record by issuing a READ statement with a Q format descriptor. You can then
use the count field information to determine how many bytes should be in an I/O
list.

Variable-Length Records Less Than 2 Gigabytes

The figure below shows the record layout of variable-length records that are less
than 2 gigabytes:

Leading Trailing
Lervgih User Dala Length
Field Fizld

I— 4 —|7 Fiesord length (REGL=valus) 4|— 4 _|
H;

AR

Variable-Length Records Greater Than 2 Gigabytes

For a record length greater than 2,147,483,639 bytes, the record is divided into
subrecords. The subrecord can be of any length from 1 to 2,147,483,639,
inclusive.

The sign bit of the leading length field indicates whether the record is continued
or not. The sign bit of the trailing length field indicates the presence of a
preceding subrecord. The position of the sign bit is determined by the endian
format of the file.

A subrecord that is continued has a leading length field with a sign bit value of 1.
The last subrecord that makes up a record has a leading length field with a sign
bit value of 0. A subrecord that has a preceding subrecord has a trailing length
field with a sign bit value of 1. The first subrecord that makes up a record has a
trailing length field with a sign bit value of 0.

The figure below shows the record layout of variable-length records that are
greater than 2 gigabytes:

170

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building

Applications
Leach':g E:;alllng
Fleld Subretord 1 User Data FlEﬁm
Sign bit=1 Sign bit=0

F— 4 —}——— Subrecord langth {from bength fiald) ———— 4 —]

Laading Trailing
Length Langth
Fimld Subrecords 2 to MN-1 User Data Fiald

Sagn bit=1 Sign bit=1

| — s ——F——— subrecced length (trem length fleld) ———— 4 ——]

Leading Treiling
Langth Length
Fleld Subracord M Lisar Data Fleld

Sign bit=0 Sign bit=1

— 4 ———— Subrecord langth {from length fiald) ———— 4 ——]

Files written with variable-length records by Intel Fortran programs usually
cannot be accessed as text files. Instead, use the Stream_LF record format for
text files with records of varying length.

Segmented Records

A segmented record is a single logical record consisting of one or more variable-
length, unformatted records in a sequentially organized disk file. Unformatted
data written to sequentially organized files using sequential access is stored as
segmented records by default.

Segmented records are useful when you want to write exceptionally long records
but cannot or do not wish to define one long variable-length record, perhaps
because virtual memory limitations can prevent program execution. By using
smaller, segmented records, you reduce the chance of problems caused by
virtual memory limitations on systems on which the program may execute.

For disk files, the segmented record is a single logical record that consists of one
or more segments. Each segment is a physical record. A segmented (logical)
record can exceed the absolute maximum record length (2.14 billion bytes), but
each segment (physical record) individually cannot exceed the maximum record
length.

To access an unformatted sequential file that contains segmented records,
specify FORM="UNFORMATTED ' and RECORDTYPE="'SEGMENTED ' when
you open the file.0

As shown in the figure below, the layout of segmented records consists of 4
bytes of control information followed by the user data:

171

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

Uzer Data

|2 |2 | Record length (REC L=valug)
Fiecord size count {integer)

2k-9821-5E

The control information consists of a 2-byte integer record size count (includes
the two bytes used by the segment identifier), followed by a 2-byte integer
segment identifier that identifies this segment as one of the following:

Identifier Value [Segment Identified

0 One of the segments between the first and last segments
1 First segment

2 Last segment

3 Only segment

If the specified record length is an odd number, the user data will be padded with
a single blank (one byte), but this extra byte is not added to the 2-byte integer
record size count.

Stream File

A Stream file is not grouped into records and contains no control information.
Stream files are used with CARRIAGECONTROL="NONE ' and contain
character or binary data that is read or written only to the extent of the variables
specified on the input or output statement.

The figure below shows the layout of a Stream file:

' E
Uzer Data 0
- F

ZR-95822-GE

Stream_CR and Stream_LF Records

A Stream_CR or Stream_LF record is a variable-length record whose length is
indicated by explicit record terminators embedded in the data, not by a count.
These terminators are automatically added when you write records to a stream-
type file and are removed when you read records.

Each variety uses a different 1-byte record terminator:

172

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

- Stream_CR files use only a carriage-return as the terminator, so
Stream_CR files must not contain embedded carriage-return characters.

« Stream_LF files use only a line-feed (new line) as the terminator, so
Stream_LF files must not contain embedded line-feed (new line)
characters. This is the usual operating system text file record type.

The figure below shows the layout of Stream_CR and Stream_LF records:

Izer Data

| Record length {REC L=value 1]

ZK-9323-0F

Microsoft* Fortran PowerStation

Compatible Files

When using the - f psconp options for Mcrosoft* Fortran
Power St ation conpatibility, the follow ng types of files are
possi bl e:

« Formatted Sequential

« Formatted Direct

- Unformatted Sequential
« Unformatted Direct

Formatted Sequential Files

A formatted sequential file is a series of formatted records written sequentially
and read in the order in which they appear in the file. Records can vary in length
and can be empty. They are separated by carriage return (OD) and line feed (0A)
characters as shown in the following figure.

Formatted Records in a Formatted Sequential File

Record M Record MN+1

[[

QD)@ B0 &

An example of a program writing three records to a formatted sequential file is
given below. The resulting file is shown in the following figure.

173

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

OPEN (3, FILE='FSEQ)
I FSEQis a formatted sequential file by default.
WRITE (3, '(A 13)') "RECORD , 1
WRITE (3, '()")
WRITE (3, '(Al1l)') 'The 3rd One'
CLGCSE (3)
END

Formatted Sequential File

— 9 bytes data in Hecord 1
2 bytes CR-LF separator
— 0 bytesdata in Recard 2
2 bytes CR-LF separator
11 bytesdata in Record 3
2 hytes CR-LF separator

—
1 910111213 14 24 25 26

(Hex) [(He) (He)
RECORDODI |0 @A|@0 @A TheOZrdOine |80 @A

Formatted Direct Files

In a formatted direct file, all of the records are the same length and can be written
or read in any order. The record size is specified with the RECL option in an
OPEN statement and should be equal to or greater than the number of bytes in
the longest record.

The carriage return (CR) and line feed (LF) characters are record separators and
are not included in the RECL value. Once a direct-access record has been
written, you cannot delete it, but you can rewrite it.

During output to a formatted direct file, if data does not completely fill a record,
the compiler pads the remaining portion of the record with blank spaces. The
blanks ensure that the file contains only completely filled records, all of the same
length. During input, the compiler by default also pads the input if the input list
and format require more data than the record contains.

You can override the default blank padding on input by setting PAD='"NO' in the
OPEN statement for the file. If PAD="NO', the input record must contain the
amount of data indicated by the input list and format specification. Otherwise, an
error occurs. PAD='"NO' has no effect on output.

An example of a program writing two records, record one and record three, to a
formatted direct file is given below. The result is shown in the following figure.

174

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

OPEN (3, FILE=' FDIR , FORME' FORMATTED , ACCESS=' DI RECT' , RECL=10)
WRI TE (3, ' (A10)', REC=1) ' RECORD ONE

WRITE (3, '(15)', REC=3) 30303

CLOSE (3)

END

Formatted Direct File

— 10 bytes data
2 bytes CR-LF separator
12 bytes undefined data
5 bytes data
5 hyte s padding (blank)
2 bytes CR-LF separator

 —
1 10111213 22 23 24 2529 3034 35 36

(BSCI |(Hes) [ASCI (He)
RECORDOONE|OD @k 3090 (80 @A

[Recnrd1 [Recurdz [RecurdS

Unformatted Sequential Files

Unformatted sequential files are organized slightly differently on different
platforms. This section describes unformatted sequential files created by Intel
Fortran when the - f psconp option (such as - f psconp i of or mat) was
specified. If you are accessing files from another platform that organizes them
differently, see Converting Unformatted Data Overview.

The records in an unformatted sequential file can vary in length. Unformatted
sequential files are organized in chunks of 130 bytes or less called physical
blocks. Each physical block consists of the data you send to the file (up to 128
bytes) plus two 1-byte "length bytes" inserted by the compiler. The length bytes
indicate where each record begins and ends.

A logical record refers to an unformatted record that contains one or more
physical blocks. (See the following figure.) Logical records can be as big as you
want; the compiler will use as many physical blocks as necessary.

When you create a logical record consisting of more than one physical block, the
compiler sets the length byte to 129 to indicate that the data in the current
physical block continues on into the next physical block. For example, if you write
140 bytes of data, the logical record has the structure shown in the following
figure.

175

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

Logical Record in Unformatted Sequential File

12 hytes data

128 hytesdata
/—I_—\ /J:\

[Dec) [Dec) |(Dec) [Dec)
124 124 | 12 12

L One logical record

The first and last bytes in an unformatted sequential file are reserved; the first
contains a value of 75, and the last holds a value of 130. Fortran uses these
bytes for error checking and end-of-file references.

The following program creates the unformatted sequential file shown in the
following figure:

! Note: The file is sequential by default
! -1 is FF FF FF FF hexadeci mal .

CHARACTER xyz(3)
| NTEGER(4) i dat a(35)
DATA idata /35 * -1/, xyz /'x", 'y', '"z'/

I Open the file and wite out a 140-byte record:
I 128 bytes (block) + 12 bytes = 140 for |DATA, then 3 bytes for XYZ
OPEN (3, FILE=" UFSEQ , FORME' UNFORVATTED)
WRI TE (3) idata
WRI TE (3) xyz
CLCSE (3)
END

Unformatted Sequential File

128 b'_-,"tES data 12 bytes data byte s data
BOF /—L — /—L ECF

1 2 130 13'1 132 133 144 145 145 147 149 15I:I 131

(Decy (Dec)| (Hexl |[(Dec)((Decl| (Hex) [(Dec)|(Dec)| (&=CI) [(Dec) (Dec)
FERO| 128 |FF...FFj 125 [12 |FF...FF| 12 3 RYZ 3 [13@

L Logical record 1 L Logical recard 2

BOF Bedinning-ofle bye (75 decimal)
L Physicaldlock-length byde (0 ==L == 129)
ECF End-of-file kyte (130 decimal)

Unformatted Direct Files

An unformatted direct file is a series of unformatted records. You can write or
read the records in any order you choose. All records have the same length,

176

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

given by the RECL specifier in an OPEN statement. No delimiting bytes separate
records or otherwise indicate record structure.

You can write a partial record to an unformatted direct file. Intel Visual Fortran
pads these records to the fixed record length with ASCII NULL characters.
Unwritten records in the file contain undefined data.

The following program creates the sample unformatted direct file shown in the
following figure:

OPEN (3, FILE=' UFDIR, RECL=10, &
& FORM = ' UNFORMATTED , ACCESS = ' DI RECT')
WRI TE (3, REC=3) .TRUE., 'abcdef’
WRI TE (3, REC=1) 2049
CLCSE (3)
END

Unformatted Direct File

— 4 bytestor integer value 2043
B undefined hytes (zeros in Microsoft Fortran)
10 bytes undefined data
|—f1 bytesfor logical value TRUE.

b bytesfor character
(ualue ‘abcdef

1 45 101 20 A 24 25 30
(Hex) (Hex) Loasc)

81 32 00 @Q 81 8@ 08 30! abedef

LRecnrM LHecnrdE LHecnrdS

Programming with Mixed Languages

Programming with Mixed Languages

Overview

Mixed-language programming is the process of building programs in which the
source code is written in two or more languages. It allows you to:

« Cadl existing code that is written in another language

« Use procedures that may be difficult to implement in a particular language
« Gain advantages in processing speeds

177

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

Mixed-language programming is possible between Intel® Fortran and Intel® C++.
To properly create mixed-language programs, rules must be established for
naming variables and procedures, for stack use, and for argument passing
among routines written in different languages. These rules, as a whole, are the
calling convention.
A calling convention includes:
« Stack consideration: Does aroutine receive avarying or fixed number of
arguments?
« Naming conventions
o Islowercase or uppercase significant or not significant?
o Areexterna names altered?
« Argument passing protocol
o Arearguments passed by value or by reference?
o What are the equivalent data types and data structures among languages?
This section provides information on the calling conventions available when
writing routines written in Fortran, C, C++, and assembly language. See these
topics:
Calling Subprograms from the Main Program
Summary of Mixed-Language Issues
Adjusting Calling Conventions in Mixed-Language Programming Overview
Adjusting Naming Conventions in Mixed-Language Programming Overview
Protoyping a Procedure in Fortran
Exchanging and Accessing Data in Mixed-Language Programming Overview

Handling Data Types in Mixed-Language Programming Overview

Intel Fortran/C Mixed-Language Programs Overview

Calling Subprograms from the Main

Program

Calls from the Main Program

178

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

The Intel Fortran main program can call Intel Fortran subprograms, including
subprograms in static and shared libraries.

For mixed-language applications, the Intel Fortran main program can call
subprograms written in Intel® C++ if the appropriate calling conventions are used
(see Calling C Procedures from a Fortran program).

Intel Fortran subprograms can be called by Intel C++ main programs

Calls to the Subprogram

You can use subprograms in static libraries if the main program is written in Intel
Fortran or Intel C++.

You can use subprograms in shared libraries in mixed-language applications if
the main program is written in Intel Fortran or Intel C++.

Summary of Mixed-Language Issues

Mixed-language programming involves a call from a routine written in one
language to a function, procedure, or subroutine written in another language. For
example, a Fortran main program may need to execute a specific task that you
want to program separately in an assembly-language procedure, or you may
need to call an existing shared library or system procedure.

Mixed-language programming is possible with Intel® Fortran and Intel® C++
because each language implements functions, subroutines, and procedures in
approximately the same way. The following table shows how different kinds of
routines from each language correspond to each other. For example, a C main
program could call an external void function, which is actually implemented as a
Fortran subroutine:

Language Equivalents for Calls to Routines
Language Call with Return Value Call with No Return Value

Fortran FUNCTION SUBROUTINE

C and C++ function (void) function

There are some important differences in the way languages implement routines.
Argument passing, haming conventions, and other interface issues must be
thoughtfully and consistently reconciled between any two languages to prevent

179

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

program failure and indeterminate results. However, the advantages of mixed-
language programming often make the extra effort worthwhile.

A summary of a few mixed-language advantages and restrictions follows:
+ Fortran/Assembly Language

Assembly-language routines are small and execute very quickly because
they do not require initialization as do high-level languages like Fortran
and C. Also, they allow access to hardware instructions unavailable to the
high-level language user. In a Fortran/assembly-language program,
compiling the main routine in Fortran gives the assembly code access to
Fortran high-level procedures and library functions, yet allows freedom to
tune the assembly-language routines for maximum speed and efficiency.
The main program can also be an assembly-language program.

« Fortran/C (or C++)

Generally, Fortran/C programs are mixed to allow one to use existing code
written in the other language. Either Fortran or C can call the other, so the
main routine can be in either language.

This section provides an explanation of the keywords, attributes, and techniques
you can use to reconcile differences between Fortran and other languages.
Adjusting calling conventions, adjusting naming conventions and writing interface
procedures are discussed in the next sections:

« Adjusting Calling Conventions in Mixed-Language Programming
« Adjusting Naming Conventions in Mixed-L anguage Programming
« Prototyping a Procedure in Fortran

After establishing a consistent interface between mixed-language procedures,
you then need to reconcile any differences in the treatment of individual data

types (strings, arrays, and so on). This is discussed in Exchanging and
Accessing Data in Mixed-Language Programming.

FlNote

This section uses the term "routine" in a generic way, to refer to functions,
subroutines, and procedures from different languages.

Adjusting Calling Conventions in Mixed-Language Programming

180

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

Adjusting Calling Conventions in

Mixed-Language Programming
Overview

The calling convention determines how a program makes a call to a routine, how
the arguments are passed, and how the routines are named. See Adjusting
Naming Conventions in Mixed-Language Programming.

In a single-language program, calling conventions are nearly always correct,
because there is one default for all routines and because header files or Fortran
module files with interface blocks enforce consistency between the caller and the
called routine.

In a mixed-language program, different languages cannot share the same header
files. If, as a result, you link Fortran and C routines that use different calling
conventions, the error is not apparent until the bad call is made at run time.
During execution, the bad call causes indeterminate results and/or a fatal error,
often somewhere in the program that has no apparent relation to the actual
cause: memory/stack corruption due to calling errors. Therefore, you should
check carefully the calling conventions for each mixed-language call.

The discussion of calling conventions between languages applies only to external
procedures. You cannot call internal procedures from outside the program unit
that contains them.

A calling convention affects programming in four ways:

1. Thecaller routine uses a calling convention to determine the order in which to
pass arguments to another routine; the called routine uses a calling convention to
determine the order in which to receive the arguments passed to it. In Fortran, you
can specify these conventions in a mixed-language interface with the
INTERFACE statement or in adata or function declaration. C/C++ and Fortran
both pass argumentsin order from left to right.

2. Thecaller routine and the called routine use a calling convention to select the
option of passing a variable number of arguments.

3. Thecaller routine and the called routine use a calling convention to pass
arguments by value (values passed) or by reference (addresses passed). Individual
Fortran arguments can also be designated with ATTRIBUTES option VALUE or
REFERENCE.

4. The caller routine and the called routine use a calling convention to establish
naming conventions for procedure names. Y ou can establish any procedure name
you want, regardless of its Fortran name, with the ALIAS directive (or

181

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

ATTRIBUTES option ALIAS). Thisis useful because C is case-sensitive, while
Fortran is not.

See these topics:

ATTRIBUTES Properties and Calling Conventions

Fortran/C Calling Conventions

ATTRIBUTES Properties and Calling

Conventions

The ATTRIBUTES properties (also known as options) C, REFERENCE, VALUE,
and VARYING all affect the calling convention of routines. You can specify the:

+ C, REFERENCE, and VARYING properties for an entire routine
« VALUE and REFERENCE properties for individual arguments

By default, Fortran passes all data by reference (except the hidden length
argument of strings, which is passed by value). If the C property is used, the
default changes to passing almost all data except arrays by value. However, in
addition to the calling-convention property C, you can specify argument
properties VALUE and REFERENCE (to pass arguments by value or by
reference), regardless of the calling convention property. Arrays can only be
passed by reference.

Different Fortran calling conventions can be specified by declaring the Fortran
procedure to have certain attributes. Assume this example:

| NTERFACE
SUBROUTI NE MY_SUB (I)
IDEC$ ATTRIBUTES C, ALIAS:'My_Sub ' :: My _SUB ! ia32 systens
| NTEGER |
END SUBROUTI NE MY_SUB
END | NTERFACE

This code declares a subroutine named Mv_suB with the C property and the
external name My_Sub_ set with the ALIAS property.

For another example, the following declaration assumes the subroutine is called
with the C calling convention:

SUBROUTI NE CALLED FROM C (A)

182

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building

I DEC$ ATTRI BUTES C ::

| NTEGER A

CALLED _FROM C

Applications

The following table summarizes the effect of the most common Fortran calling-
convention directives:

Calling Conventions for ATTRIBUTES Properties

Argument
Scalar
Scalar [value]

Scalar
[reference]

String

String [value]

String
[reference]

Array
Array [value]

Array
[reference]

Derived Type

Derived Type
[value]

Derived Type
[reference]

F90 Pointer

F90 Pointer
[value]

F90 Pointer
[reference]

Default
Reference
Value

Reference

Reference, either

Len:End or
Len:Mixed

Error

Reference, either No
Len or Len:Mixed

Reference
Error

Reference
Reference
Value, size
dependent

Reference

Descriptor

Error

Descriptor

C
Value
Value

Reference

String(1:1)

String(1:1)

Reference, No

Len
Reference
Error

Reference

Value, size
dependent

Value, size
dependent

Reference

Descriptor

Error

Descriptor

C, REFERENCE
Reference
Value

Reference

Reference, either
Len:End or Len:Mixed

String(1:1)

Reference, No Len

Reference
Error

Reference

Reference

Value, size dependent

Reference

Descriptor

Error

Descriptor

The procedure name is all lowercase for all the calling conventions.

The terms in the above table mean the following:

183

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

[value] Argument assigned the VALUE attribute.
[reference] Argument assigned the REFERENCE attribute.

Value The argument value is pushed on the stack. All values are
padded to the next 4-byte boundary.

Reference On IA-32 systems, the 4-byte argument address is pushed on
the stack.
On Itanium® -based systems, the 8-byte argument address is
pushed on the stack.

Len:End or For certain string arguments:
Len:Mixed
+ Len:End applies when - nom xed_str _| en_ar g is set.
The length of the string is pushed (by value) on the stack
after all of the other arguments. This is the default.
+ Len:Mixed applies when - mi xed_str _| en_ar g is set.
The length of the string is pushed (by value) on the stack
immediately after the address of the beginning of the
string.

No Len or For certain string arguments:
Len:Mixed
+ No Len applies when - nom xed_str | en_ar g is set.
The length of the string is not available to the called
procedure. This is the default.
+ Len:Mixed applies when - mi xed_str _| en_ar g is set.
The length of the string is pushed (by value) on the stack
immediately after the address of the beginning of the
string.

No Len For string arguments, the length of the string is not available to
the called procedure.

String(1:1) For string arguments, the first character is converted to
INTEGER(4) as in ICHAR(string(1:1)) and pushed on the stack
by value.

Error Produces a compiler error.

Descriptor On IA-32 systems, the 4-byte address of the array descriptor.
On Itanium-based systems, the 8-byte address of the array
descriptor.

Size On 1A-32 systems, derived-type arguments specified by value
dependent are passed as follows:

184

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

« Arguments from 1 to 4 bytes are passed by value.

+ Arguments from 5 to 8 bytes are passed by value in two
registers (two arguments).

« Arguments more than 8 bytes provide value semantics by
passing a temporary storage address by reference.

The following table shows another Fortran ATTRIBUTES property that matches
another language calling convention:

Other Language Calling Convention Matching ATTRIBUTES Property
C/C++ cdecl (default) C

The ALIAS property can be used with any other Fortran calling-convention
property to preserve mixed-case names. You can also use the DECORATE
property in combination with the ALIAS property to specify that the external name
specified in ALIAS should have the correct prefix and postfix decorations for the
calling mechanism in effect.

Adjusting Naming Conventions in Mixed-Language Programming

Adjusting Naming Conventions in

Mixed-Language Programming

Overview

The ATTRIBUTES option C determines naming conventions as well as calling
conventions.

Calling conventions specify how arguments are moved and stored; naming
conventions specify how symbol names are altered when placed in a . o file.
Names are an issue for external data symbols shared among parts of the same
program as well as among external routines. Symbol names (such as the name
of a subroutine) identify a memory location that must be consistent among all
calling routines.

Parameter names (names given in a procedure definition to variables that are
passed to it) are never affected.

Names are altered because of case sensitivity (in C), lack of case sensitivity (in
Fortran), name decoration (in C++), or other issues. If naming conventions are

185

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

not reconciled, the program cannot successfully link and you will receive an
"unresolved external” error.

See these topics:

C/C++ Naming Conventions

Naming Conventions for Fortran, C, and C++
Reconciling the Case of Names

Fortran Module Names and ATTRIBUTES

C/C++ Naming Conventions

C and C++ preserve case sensitivity in their symbol tables while Fortran by
default does not, a difference that requires attention. Fortunately, you can use
the Fortran directive ATTRIBUTES ALIAS option to resolve discrepancies
between names, to preserve mixed-case names, or to override the automatic
conversion of names to all lowercase by Fortran.

C++ uses the same calling convention and argument-passing techniques as C,
but naming conventions differ because of C++ decoration of external symbols.
When the C++ code resides in a . cpp file (created when you select C/C++ file
from the integrated development environment), C++ name decoration semantics
are applied to external names, often resulting in linker errors. The extern "C"
syntax makes it possible for a C++ module to share data and routines with other
languages by causing C++ to drop name decoration.

The following example declares pr n as an external function using the C naming
convention. This declaration appears in C++ source code:

extern "C" { void prn(); }

To call functions written in Fortran, declare the function as you would in C and
use a "C" linkage specification. For example, to call the Fortran function FACT
from C++, declare it as follows:

extern "C" { int FACT(int n); }

The extern "C" syntax can be used to adjust a call from C++ to other languages,
or to change the naming convention of C++ routines called from other languages.
However, extern "C" can only be used from within C++. If the C++ code does not
use extern "C" and cannot be changed, you can call C++ routines only by
determining the name decoration and generating it from the other language.

186

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

Such an approach should only be used as a last resort, because the decoration
scheme is not guaranteed to remain the same between versions.

Use of extern "C" has some restrictions:
« You cannot declare a member function with extern "C".

« You can specify extern "C" for only one instance of an overloaded function; all
other instances of an overloaded function have C++ linkage.

Procedure Names in Fortran, C, and

C++

The following table summarizes how Fortran, C, and C++ handle procedure
names:

Language | Attributes Name Translated As | Case of Name in
.0 File
Fortran cDEC$ name_ All lowercase

ATTRIBUTES C

Fortran default name__ All lowercase

C cdecl (default) name__ Mixed case
preserved

C __stdcal l _name@n Mixed case
preserved

C++ Default _name@ @decoration | Mixed case
preserved

Reconciling the Case of Names

The following summarizes how to reconcile names between languages:
+ All-lowercase names
If the name of the routine appears as all lowercase in C, then haming
conventions are automatically correct. Any case can be used in the

Fortran source code, including mixed case, since the name is changed to
all lowercase.

187

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

« Mixed-case names

If the name of a routine appears as mixed-case in C and you cannot
change the name, then you can resolve this naming conflict by using the
Fortran ATTRIBUTES ALIAS option ALIAS is required in this situation
because otherwise Fortran will not preserve the mixed-case name.

To use the ALIAS option, place the name in quotation marks exactly as it
is to appear in the . o file.

The following is an example for referring to the C function My_Pr oc:
I DEC$ ATTRIBUTES ALIAS:' My _Proc ' :: My_Proc

Fortran Module Names and

ATTRIBUTES

Fortran module entities (data and procedures) have external names that differ
from other external entities. Module names use the convention:

MODULENANME. np_ENTI TY_

MODUL ENAME is the name of the module and ENTI TY is the name of the module
procedure or module data contained within MODULENAME. _np__is the separator
between the module and entity names and is always lowercase.

For example:

MODULE nynod
| NTEGER a
CONTAI NS
SUBROUTINE b (j)
| NTECGER |j
END SUBROUTI NE
END MODULE

This results in the following symbols being defined in the compiled . o file:

nynmod_np_a_
nynmod_np_b_

Compiler options can affect the naming of module data and procedures.

f} Note

188

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

Except for ALIAS, ATTRIBUTES properties do not affect the module name.

The following table shows how each ATTRIBUTES property affects the
subroutine in the previous example module.

Effect of ATTRIBUTES Op tions on Fortran Module Names

ATTRIBUTES Property Given to Procedure Name in .o file

Routine 'b’

None nmynmod_np_b_

C mymod_np_b_

ALIAS Overrides all others, name as given in
the alias

VARYING No effect on name

You can write code to call Fortran modules or access module data from other
languages. As with other naming and calling conventions, the module name must
match between the two languages. Generally, this means using the C convention
in Fortran, and if defining a module in another language, using the ALIAS
property to match the name within Fortran. For examples, see Using Modules in
Fortran/C Mixed-Language Programming.

Prototyping a Procedure in Fortran

You define a prototype (interface block) in your Fortran source code to tell the
Fortran compiler which language conventions you want to use for an external
reference. The interface block is introduced by the INTERFACE statement. See
"Program Units and Procedures"” in the Language Reference for a description of
the INTERFACE statement.

The general form for the INTERFACE statement is:

| NTERFACE

routine statenment

[routine ATTRI BUTE opti ons]

[argunent ATTRI BUTE opti ons]
formal argunent decl arations
END routi ne nane

END | NTERFACE

The routi ne stat enent defines either a FUNCTION or a SUBROUTINE,
where the choice depends on whether a value is returned or not, respectively.
The optional r out i ne ATTRI BUTE opti ons (such as C) determine the calling,

189

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

naming, and argument-passing conventions for the routine in the prototype
statement. The optional ar gunent ATTRI BUTE opti ons (such as VALUE and
REFERENCE) are properties attached to individual arguments. The f or mal
argunent decl ar at i ons are Fortran data type declarations. Note that the
same INTERFACE block can specify more than one procedure.

For example, suppose you are calling a C function that has the following
prototype:

extern void My_Proc (int i);

The Fortran call to this function should be declared with the following
INTERFACE block:

| NTERFACE
SUBROUTI NE ny_Proc (1)
I DEC$ ATTRIBUTES C, ALIAS:'M/_Proc_' :: ny_Proc
| NTECER |

END SUBROUTI NE ny_Proc
END | NTERFACE

Note that, except in the ALIAS string, the case of My_Pr oc in the Fortran
program does not matter.

Exchanging and Accessing Data in Mixed-Language Programming

Exchanging and Accessing Data in

Mixed-Language Programming
Overview

You can use several approaches to sharing data between mixed-language
routines, which can be used within the individual languages as well.

Generally, if you have a large number of parameters to work with or you have a
large variety of parameter types, you should consider using modules or external
data declarations. This is true when using any given language, and to an even
greater extent when using mixed languages.

See also Using Modules in Fortran/C Mixed-Language Programming.

See these topics:

190

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

Passing Arguments in Mixed-Language Programming

Using Common External Data in Mixed-Language Programming

Passing Arguments in Mixed-

Language Programming

You can pass data between Fortran, C, and C++ through calling argument lists
just as you can within each language (for example, the argument list a, b and c in
CALL MYSUB(a, b, c)). There are two ways to pass individual arguments:

« By value, which passes the argument's val ue.

« By reference, which passes the address of the arguments. On |A-32 systems,
Fortran, C, and C++ use 4-byte addresses. On Itanium® -based systems, these
languages use 8-byte addresses.

You need to make sure that for every call, the calling program and the called
routine agree on how each argument is passed. Otherwise, the called routine
receives bad data.

The Fortran technique for passing arguments changes depending on the calling
convention specified. By default, Fortran passes all data by reference (except the
hidden length argument of strings, which is passed by value).

If the ATTRIBUTES C option is used, the default changes to passing all data by
value except arrays. If the procedure has the REFERENCE option as well as the
C option, all arguments by default are passed by reference.

In Fortran, in addition to establishing argument passing with the calling-
convention option C, you can specify argument options, VALUE and
REFERENCE, to pass arguments by value or by reference. In mixed-language
programming, it is a good idea to specify the passing technique explicitly rather
than relying on defaults.

f} Note

In addition to ATTRIBUTES, the - [no] m xed_str _| en_ar g compiler
option also establishes some default argument passing conventions (such
as for hidden length of strings).

Examples of passing by reference and value for C follow. All are interfaces to the

example Fortran subroutine TESTPROC below. The definition of TESTPROC declares
how each argument is passed. The REFERENCE option is not strictly necessary

191

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

in this example, but using it makes the argument's passing convention
conspicuous.

SUBRQOUTI NE TESTPROC(VALPARM REFPARM)
I DEC$ ATTRI BUTES VALUE :: VALPARM
| DEC$ ATTRI BUTES REFERENCE :: REFPARM
| NTEGER VALPARM
| NTEGER REFPARM
END SUBROUTI NE

In C and C++ all arguments are passed by value, except arrays, which are
passed by reference to the address of the first member of the array. Unlike
Fortran, C and C++ do not have calling-convention directives to affect the way
individual arguments are passed. To pass non-array C data by reference, you
must pass a pointer to it. To pass a C array by value, you must declare it as a
member of a structure and pass the structure. The following C declaration sets
up a call to the example Fortran t est pr oc subroutine:

extern void testproc(int ValParm int *RefParm);

The following table summarizes how to pass arguments by reference and value.
An array name in C is equated to its starting address because arrays are
normally passed by reference. You can assign the REFERENCE property to a
procedure, as well as to individual arguments.

Passing Arguments by Reference and Value

Language ATTRIBUTE Argument To Pass by To Pass by
Type Reference Value
Fortran Default Scalars and Default VALUE option
derived types
C option Scalars and REFERENCE Default
derived types option
Default Arrays Default Cannot pass by
value
C option Arrays Default Cannot pass by
value
C/C++ Non-arrays Pointer Default
argument_name
Arrays Default Struct {type}
array_name

192

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

This table does not describe argument passing of strings and Fortran 95/90
pointer arguments in Intel Fortran, which are constructed differently than other
arguments. By default, Fortran passes strings by reference along with the string
length. String length placement depends on whether the compiler option -

m xed_str | en_ar g (immediately after the address of the beginning of the
string) or -nom xed_str | en_ar g (after all arguments) is set. The default
setting is - nom xed_str _|len_arg.

Fortran 95/90 array pointers and assumed-shape arrays are passed by passing
the address of the array descriptor.

For a discussion of the effect of attributes on passing Fortran 95/90 pointers and

strings, see Handling Fortran 90 Pointers and Allocatable Arrays and Handling
Character Strings.

Using Common External Data in

Mixed-Language Programming

Common external data structures include Fortran common blocks, and C
structures and variables that have been declared global or external. All of these
data specifications create external variables, which are variables available to
routines outside the routine that defines them.

External variables are case-sensitive, so the cases must be matched between
different languages, as discussed in the section on haming conventions.
Common external data exchange is described in the following sections:

« Using Global Variables
+ Using Fortran Common Blocks and C Structures

Using Global Variables in Mixed-Language
Programming

A variable can be shared between Fortran and C by declaring it as global (or
COMMON) in one language and accessing it as an external variable in the other
language. In Fortran programs, variables must be passed as arguments.

In Fortran, a variable can access a global parameter by using the EXTERN
option for ATTRIBUTES. For example:

| DEC$ ATTRI BUTES C, EXTERN :: idata
| NTEGER i data (20)

193

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

EXTERN tells the compiler that the variable is actually defined and declared
global in another source file. If Fortran declares a variable external with
EXTERN, the language it shares the variable with must declare the variable
global.

In C, a variable is declared global with the statement:

int idata[20]; // declared as global (outside of any function)

Fortran can declare the variable global (COMMON) and other languages can
reference it as external:

I Fortran declaring Pl gl obal
REAL PI
COMON /PI/ PI I Commpbn Bl ock and vari abl e have the sane nane

In C, the variable is referenced as an external with the statement:

//C code with external reference to PIO
extern float PI;

Note that the global name C references is the name of the Fortran common
block, not the name of a variable within a common block. Thus, you cannot use
blank common to make data accessible between C and Fortran. In the preceding
example, the common block and the variable have the same name, which helps
keep track of the variable between the two languages. Obviously, if a common
block contains more than one variable they cannot all have the common block
name. (See Using Fortran Common Blocks and C Structures.)

Using Fortran Common Blocks and C Structures

To reference C structures from Fortran common blocks and vice versa, you must
take into account the way the common blocks and structures differ in their
methods of storing member variables in memory. Fortran places common block
variables into memory in order as close together as possible, with the following
rules:

« AsingleBYTE, INTEGER(1), LOGICAL(1), or CHARACTER variablein
common block list begins immediately following the previous variable or array in
memory.

194

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

« All other types of single variables begin at the next even address immediately
following the previous variable or array in memory.

« All arrays of variables begin on the next even address immediately following the
previous variable or array in memory, except for CHARACTER arrays which
always follow immediately after the previous variable or array.

« All common blocks begin on afour-byte aligned address.

Because of these padding rules, you must consider the alignment of C structure
elements with Fortran common block elements and assure matching either by
making all variables the same types and kinds in both languages (using only 4-
byte and 8-byte data types in both languages simplifies this) or by using the C
pack pragmas in the C code around the C structure to make C data packing like
Fortran's. For example:

#pragma pack(2)
struct {
int N
char | NFJ 30];

} exanp;
#pragma pack()

To restore the original packing, you must add #pr agma pack() atthe end of
the structure. (Remember: Fortran module data can be shared directly with C
structures with appropriate naming.)

Once you have dealt with alignment and padding, you can give C access to an
entire common block or set of common blocks. Alternatively, you can pass
individual members of a Fortran common block in an argument list, just as you
can any other data item. Use of common blocks for mixed-language data
exchange is discussed in the following sections:

« Accessing Common Blocks and C Structures Directly
» Passing the Address of a Common Block

Accessing Common Blocks and C Structures Directly

You can access Fortran common blocks directly from C by defining an external C
structure with the appropriate fields, and making sure that alignment and padding
between Fortran and C are compatible. The C and ALIAS ATTRIBUTES options
can be used with a common block to allow mixed-case names.

As an example, suppose your Fortran code has a common block named Real |y,
as shown:

195

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

I DEC$ ATTRI BUTES ALIAS:' Really' :: Really
REAL(4) x, vy, z(6)
REAL(8) ydbl

COMWON / Really / x, vy, z(6), ydbl

You can access this data structure from your C code with the following external
data structure:

#pragma pack(2)

extern struct {
float x, vy, z[6];
doubl e ydbl ;

} Really;

#pragma pack()

You can also access C structures from Fortran by creating common blocks that
correspond to those structures. This is the reverse case from that just described.
However, the implementation is the same because after common blocks and
structures have been defined and given a common address (name), and
assuming the alignment in memory has been dealt with, both languages share
the same memory locations for the variables.

Passing the Address of a Common Block

To pass the address of a common block, simply pass the address of the first
variable in the block, that is, pass the first variable by reference. The receiving C
or C++ module should expect to receive a structure by reference.

In the following example, the C function i ni t cb receives the address of a
common block with the first variable named n, which it considers to be a pointer
to a structure with three fields:

Fortran source code:

I
| NTERFACE
SUBRQOUTI NE i ni tcb (BLOCK)
IDEC$ ATTRIBUTES C :: initchb
I DEC$ ATTRI BUTES REFERENCE :: BLOCK
| NTEGER BLOCK
END SUBROUTI NE
END | NTERFACE
I
| NTEGER n
REAL(8) x, vy
COMMON / CBLOCK/ n, X, Yy

CALL initch(n)

196

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

C source code;

/1

#pragma pack(?2)
struct bl ock_type
t

int n;

doubl e x;
doubl e v;

1
#pragma pack()

/1

void initcb(struct block type *block _hed)

bl ock_hed->n = 1;
bl ock_hed->x = 10. 0;
bl ock_hed->y = 20. 0;

}

Handling Data Types in Mixed-Language Programming

Handling Data Types in Mixed-

Language Programming Overview

Even when you have reconciled calling conventions, naming conventions, and
methods of data exchange, you must still be concerned with data types, because
each language handles them differently.

The following table lists the equivalent data types between Fortran and C:

Equivalent Data Types

Fortran Data C Data Type
Type

INTEGER(1) char
INTEGER(2) short
INTEGER(4) int, |long
INTEGER(8) _int64
REAL(4) f1 oat
REAL(8) doubl e

197

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

REAL(16) ---

CHARACTER(1) |unsigned char

CHARACTER*(*) | See Handling
Character Strings

COMPLEX(4) struct conpl ex4

fl oat real,
i mag;

b

COMPLEX(8) struct conpl ex8

doubl e real,

I mag;

1
COMPLEX(16) |---
All LOGICAL Use integer types for
types C

See these topics:

Handling Numeric, Complex, and Logical Data Types
Handling Fortran Array Pointers and Allocatable Arrays
Handling Intel Fortran Pointers

Handling Arrays and Fortran Array Descriptors
Handling Character Strings

Handling User-Defined Types

Handling Numeric, Complex, and

Logical Data Types

Normally, passing numeric data does not present a problem. If a C program
passes an unsigned data type to a Fortran routine, the routine can accept the
argument as the equivalent signed data type, but you should be careful that the
range of the signed type is not exceeded.

198

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

The table of Equivalent Data Types summarizes equivalent numeric data types
for Fortran and C/C++.

C and C++ do not directly implement the Fortran types COMPLEX(4),
COMPLEX(8), and COMPLEX(16). However, you can write structures that are
equivalent. The type COMPLEX(4) has two fields, both of which are 4-byte
floating-point numbers; the first contains the real-number component, and the
second contains the imaginary-number component. The type COMPLEX is
equivalent to the type COMPLEX(4). The types COMPLEX(8) and
COMPLEX(16) are similar except that each field contains an 8-byte or 16-byte
floating-point number respectively.

f) Note

On IA-32 systems, Fortran functions of type COMPLEX place a hidden
COMPLEX argument at the beginning of the argument list. C functions that
implement such a call from Fortran must declare this hidden argument
explicitly, and use it to return a value. The C return type should be void.

Following are the C/C++ structure definitions for the Fortran COMPLEX types:

struct conpl ex4 {
float real, img;

1

struct conpl ex8 {
doubl e real, imag;

b

A Fortran LOGICAL(2) is stored as a 2-byte indicator value (O=false, and the -
f psconp [no] | ogi cal s compiler option determines how true values are
handled). A Fortran LOGICAL(4) is stored as a 4-byte indicator value, and
LOGICAL(1) is stored as a single byte. The type LOGICAL is the same as
LOGICAL(4), which is equivalent to type i nt in C.

You can use a variable of type LOGICAL in an argument list, module, common
block, or global variable in Fortran and type i nt in C for the same argument.
Type LOGICAL(4) is recommended instead of the shorter variants for use in
common blocks.

The Intel C++ class type has the same layout as the corresponding C st r uct
type, unless the class defines virtual functions or has base classes. Classes that
lack those features can be passed in the same way as C structures.

Returning Complex Type Data

199

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

If a Fortran program expects a procedure to return a COMPLEX DOUBLE
COMPLEX value, the Fortran compiler adds an additional argument to the
beginning of the called procedure argument list. This additional argument is a
pointer to the location where the called procedure must store its result.

Example below shows the Fortran code for returning a complex data type
procedure called WBAT and the corresponding C routine.

Example of Returning Complex Data Types from C to Fortran

Fortran code:

COVPLEX BAT, WBAT
REAL X, Y
BAT = WBAT (X, Y)

Corresponding C routine:

struct _nyconplex { float real, imag };
t ypedef struct _myconpl ex _single_conpl ex;

voi d WBAT (_single conplex location, float *x, float *y)

float real part;

fl oat imagi narypart;

. programtext, producing real part and inmagi narypart...
*| ocation.real = realpart;

*| ocation.imag = imagi narypart;

}

In the above example, the following restrictions and behaviors apply:

- The argument location does not appear in the Fortran call; it is added by the
compiler.

« The C subroutine must copy the result's real and imaginary parts correctly
into | ocat i on.

« The called procedure is type voi d.

If the function returned a DOUBLE COMPLEX value, the type f | oat would be
replaced by the type doubl e in the definition of | ocat i on in \BAT.

Handling Fortran Array Pointers and

Allocatable Arrays

200

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

How Fortran 95/90 array pointers and arrays are passed is affected by the
ATTRIBUTES properties in effect, and by the INTERFACE, if any, of the
procedure they are passed to.

If the INTERFACE declares the array pointer or array with deferred shape (for
example, ARRAY(:)), its descriptor is passed. This is true for array pointers and
all arrays, not just allocatable arrays. If the INTERFACE declares the array
pointer or array with fixed shape, or if there is no interface, the array pointer or
array is passed by base address as a contiguous array, which is like passing the
first element of an array for contiguous array slices.

When a Fortran 95/90 array pointer or array is passed to another language,
either its descriptor or its base address can be passed.

The following shows how allocatable arrays and Fortran 95/90 array pointers are
passed with different attributes in effect:

« If the property of the array pointer or array is not included or is REFERENCE, it
is passed by descriptor, regardless of the property of the passing procedure (None;
C; or C, REFERENCE).

« If the property of the array pointer or array is VALUE, an error is returned,
regardless of the property of the passing procedure.

Note that the VALUE option cannot be used with descriptor-based arrays.

When you pass a Fortran array pointer or an array by descriptor to a non-Fortran
routine, that routine needs to know how to interpret the descriptor. Part of the
descriptor is a pointer to address space, as a C pointer, and part of it is a
description of the pointer or array properties, such as its rank, stride, and bounds.

For information about the Intel Fortran array descriptor format, see Handling
Arrays and Fortran Array Descriptors.

Fortran 95/90 pointers that point to scalar data contain the address of the data
and are not passed by descriptor.

Handling Integer Pointers

Integer pointers (also known as Cray*-style pointers) are not the same as Fortran
90 pointers, but are instead like C pointers. Integer pointers are 4-byte INTEGER
guantities on 1A-32 systems, and 8-byte INTEGER quantities on Itanium®-based
systems.

Passing Integer Pointers

201

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

When passing an integer pointer to a routine written in another language:
« The argument should be declared in the non-Fortran routine as a pointer
of the appropriate data type.
« The argument passed from the Fortran routine should be the integer
pointer name, not the pointee name.

For example:

I Fortran main program

| NTERFACE
SUBROUTI NE Ptr_Sub (p)
| DEC$ ATTRIBUTES C, ALIAS:' Ptr_Sub' :: Ptr_Sub
| NTEGER p

END SUBROUTI NE Ptr_Sub
END | NTERFACE
REAL A(10), VAR(10)
PO NTER (p, VAR) ! VAR is the pointee
I pis the integer pointer

p = LOC(A)

CALL Ptr_Sub (p)

WRI TE(*, *) "A(4) ="', A(4)
END

)/C subpr ogram
void Ptr_Sub (float *p)

p[3] = 23.5;
On Itanium-based systems, the declaration for p in the INTERFACE block should
be | NTEGER(8) p.

When the main Fortran program and C function are built and executed, the
following output appears:

A(4) = 23.50000

Receiving Pointers

When receiving a pointer from a routine written in another language:

« The argument should be declared in the non-Fortran routine as a pointer
of the appropriate data type and passed as usual.

« The argument received by the Fortran routine should be declared as an
integer pointer name, and the POINTER statement should associate it
with a pointee of the appropriate data type (matching the data type of the

202

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

passing routine). When inside the Fortran routine, use the pointee to set
and access what the pointer points to.

For example:

I Fortran subroutine.
SUBRQUTI NE | ptr_Sub (p)
IDEC$ ATTRIBUTES C, ALIAS:'Iptr_Sub' :: Iptr_Sub
i nteger VAR(10)
PO NTER (p, VAR
OPEN (8, FILE=" STAT.DAT")
READ (8, *) VAR(4) ! Read fromfile and store the
I fourth el ement of VAR
END SUBRQUTI NE | ptr_Sub
|
/1 C main program
extern void Iptr_Sub(int *p);
main (void)

int a[10];

Iptr_Sub (&a[0]);
printf("a[3] = %\n", a[3]);

When the main C program and Fortran subroutine are built and executed, the
following output appears if the STAT. DAT file contains 4:

a[3] = 4

Handling Arrays and Fortran Array

Descriptors

Fortran 95/90 allows arrays to be passed as array elements, as array
subsections, or as whole arrays referenced by array name. Within Fortran, array
elements are ordered in column-major order, meaning the subscripts of the
lowest dimensions vary first.

When using arrays between Fortran and another language, differences in
element indexing and ordering must be taken into account. You must reference
the array elements individually and keep track of them. Fortran and C vary in the
way that array elements are indexed. Array indexing is a source-level
consideration and involves no difference in the underlying data.

Fortran and C arrays differ in two ways:

203

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

« Thevalue of the lower array bound is different. By default, Fortran indexes the
first element of an array as 1. C and C++ index it as 0. Fortran subscripts should
therefore be one higher. (Fortran also provides the option of specifying another
integer lower bound.)

+ Inarrays of more than one dimension, Fortran varies the left-most index the
fastest, while C varies the right-most index the fastest. These are sometimes called
column-major order and row-major order, respectively.

In C, the first four elements of an array declared as X[3][3] are:

X[O][0] X[O][1] X[O][2] X(1][0]

In Fortran, the first four elements are:

X(1,1) X(2,1) X(3,1) X(1,2)

The order of indexing extends to any number of dimensions you declare. For
example, the C declaration:

int arrl[2][10][15][20];

is equivalent to the Fortran declaration:

| NTEGER arr1(20, 15, 10, 2)

The constants used in a C array declaration represent extents, not upper bounds
as they do in other languages. Therefore, the last element in the C array
declared as int arr[5][5] is arr[4][4], not arr[5][5].

The following table shows equivalencies for array declarations.

Equivalent Array Declarations for Different Languages

Language | Array Declaration | Array Reference from Fortran

Fortran DIMENSION x(i, K) | x(i, k)
Or
type x(i, k)

C/C++ type X[K] [i] x(i-1,k-1)

204

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

Intel Fortran Array Descriptor Format

For cases where Fortran 95/90 needs to keep track of more than a pointer
memory address, the Intel Fortran Compiler uses an array descriptor, which
stores the details of how an array is organized.

When using an explicit interface (by association or procedure interface block),
Intel Fortran generates a descriptor for the following types of array arguments:

« Pointersto arrays (array pointers)
« Assumed-shape arrays

Certain data structure arguments do not use a descriptor, even when an
appropriate explicit interface is provided. For example, explicit-shape and
assumed-size arrays do not use a descriptor. In contrast, array pointers and
allocatable arrays use descriptors regardless of whether they are used as
arguments.

When calling between Intel Fortran and a non-Fortran language (such as C),
using an implicit interface allows the array argument to be passed without an
Intel Fortran descriptor. However, for cases where the called routine needs the
information in the Intel Fortran descriptor, declare the routine with an explicit
interface and specify the dummy array as either an assumed-shape array or with
the pointer attribute.

You can associate a Fortran 95/90 pointer with any piece of memory, organized
in any way desired (so long as it is "rectangular” in terms of array bounds). You
can also pass Fortran 95/90 pointers to other languages, such as C, and have
the other language correctly interpret the descriptor to obtain the information it
needs.

However, using array descriptors can increase the opportunity for errors and the
corresponding code is not portable. In particular, be aware of the following:

+ If the descriptor is not defined correctly, the program may access the wrong
memory address, possibly causing a General Protection Fault.

« Array descriptor formats are specific to each Fortran compiler. Code that uses
array descriptorsis not portable to other compilers or platforms. For example, the
current Intel Fortran array descriptor format differs from the array descriptor
format for Intel Fortran 7.0.

« Thearray descriptor format may change in the future.

The components of the current Intel Fortran array descriptor on IA-32 systems
are as follows:

205

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

« Thefirst longword (bytes O to 3) contains the base address. The base address plus
the offset defines the first memory location (start) of the array.

« The second longword (bytes 4 to 7) contains the size of a single element of the
array.

« Thethird longword (bytes 8 to 11) contains the offset. The offset is added to the
base address to define the start of the array.

« Thefourth longword (bytes 12 to 15) contains the low-order bit set if the array
has been defined (storage allocated). Other bits may also be set by the compiler
within this longword, for example, to indicate a contiguous array.

« Thefifth longword (bytes 16 to 19) contains the number of dimensions (rank) of
the array.

« Thesixth longword (bytes 20 to 23) is reserved.

« Theremaining longwords (bytes 24 up to 107) contain information about each
dimension (up to seven). Each dimension is described by three additional
longwords:

o Thenumber of elements (extent)

o The distance between the starting address of two successive elementsin
thisdimension, in bytes.

o Thelower bound

An array of rank one requires three additional longwords for a total of nine
longwords (6 + 3*1) and ends at byte 35. An array of rank seven is described in a
total of 27 longwords (6 + 3*7) and ends at byte 107.

For example, consider the following declaration:

i nteger,target :: a(10, 10)

i nteger,pointer :: p(:,:)

p=>a(9:1:-2,1:9:3)

call f(p)

206

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

The descriptor for actual argument p would contain the following values:

« Thefirst longword (bytes O to 3) contain the base address (assigned at run-time).
« Thesecond longword (bytes 4 to 7) is set to 4 (size of asingle element).
« Thethird longword (bytes 8 to 11) contain the offset (assigned at run-time).
« Thefourth longword (bytes 12 to 15) contains 1 (low bit is set).
« Thefifth longword (bytes 16 to 19) contains 2 (rank).
« Thesixth longword isreserved.
« The seventh, eighth, and ninth longwords (bytes 24 to 35) contain information for
the first dimension, as follows:
o 5 (extent)
o -8 (distance between elements)
o 9 (thelower bound)
« For the second dimension, the tenth, eleventh, and twelfth longwords (bytes 36 to
47) contain:
o 3(extent)
o 120 (distance between elements)
o 1 (thelower bound)
« Byte47isthelast byte for this example.

E) Note

The format for the descriptor on Itanium-based systems is identical to that on
IA-32 systems, except that all fields are 8-bytes long, instead of 4-bytes.

Handling Character Strings

By default, Intel Fortran passes a hidden length argument for strings. The hidden
length argument consists of an unsigned 4-byte integer (IA-32 systems) or
unsigned 8-byte integer (Itanium® -based systems), always passed by value,
added to the end of the argument list. You can alter the default way strings are
passed by using attributes.

The following table shows the effect of various attributes on passed strings:

Effect of ATTRIBUTES Properti es on Character Strings Passed as
Arguments

Argument Default C C, REFERENCE

String Passed hv First character Passed hv reference.

207

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

reference, converted to along with length
along with INTEGER(4) and
length passed by value
String with Error First character First character
VALUE option converted to converted to
INTEGER(4) and INTEGER(4) and
passed by value passed by value
String with Passed by Passed by Passed by reference,
REFERENCE reference, reference, no length no length
option possibly along
with length

The important things to note about the above table are:

+ Character strings without the VALUE or REFERENCE attribute that are passed
to C routines are not passed by reference. Instead, only the first character is
passed and it is passed by value.

« Character strings with the VALUE option passed to C routines are not passed by
reference. Instead, only the value of the first character is passed.

« For string arguments with default ATTRIBUTES, ATTRIBUTESC, or
REFERENCE:

o When -nom xed_str_| en_ar g is set, the length of the string is
pushed (by value) on the stack after all of the other arguments. This
is the default.

o When-m xed str | en_ar g is set, the length of the string is
pushed (by value) on the stack immediately after the address of the
beginning of the string.

« For string arguments passed by reference with default ATTRIBUTES:

o When-nom xed_str | en_ar g is set, the length of the string is
not available to the called procedure. This is the default.

o When-m xed _str | en_ar g is set, the length of the string is
pushed (by value) on the stack immediately after the address of the
beginning of the string.

Since all strings in C are pointers, C expects strings to be passed by reference,
without a string length. In addition, C strings are null-terminated while Fortran
strings are not. There are two basic ways to pass strings between Fortran and C:
convert Fortran strings to C strings, or write C routines to accept Fortran strings.

To convert a Fortran string to C, choose a combination of attributes that passes
the string by reference without length, and null terminate your strings. For
example:

| NTERFACE
208

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

SUBROUTI NE Pass_Str (string)
I DEC$ ATTRI BUTES C, DECORATE, ALI AS: ' Pass_Str' :: Pass_Str
CHARACTER* (*) string
I DEC$ ATTRI BUTES REFERENCE :: string
END SUBROUTI NE
END | NTERFACE
CHARACTER(40) forstring
DATA forstring /'"This is a null-terminated string.'Cd

The following example shows the extension of using the null-terminator for the string in
the Fortran DATA statement (see "C Strings' in the Intel® Fortran Language
Reference):

DATA forstring /'"This is a null-termnated string.'d

The Cinterfaceis:

void Pass_Str (char *string)

To get your C routines to accept Fortran strings, C must account for the length argument
passed along with the string address. For example:

I Fortran code

| NTERFACE
SUBROUTI NE Pass_Str (string)
CHARACTER* (*) string

END | NTERFACE

The C routine must expect two arguments:

void pass_str (char *string, unsigned int length arg)

This interface handles the hidden-length argument, but you must still reconcile C
strings that are null-terminated and Fortran strings that are not. In addition, if the
data assigned to the Fortran string is less than the declared length, the Fortran
string will be blank padded.

Rather than trying to handle these string differences in your C routines, the best
approach in Fortran/C mixed programming is to adopt C string behavior
whenever possible.

Fortran functions that return a character string using the syntax CHARACTER* (*)
place a hidden string argument and the length of the string at the beginning of
the argument list.

C functions that implement such a Fortran function call must declare this hidden

string argument explicitly and use it to return a value. The C return type should
be void. However, you are more likely to avoid errors by not using character-

209

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

string return functions. Use subroutines or place the strings into modules or
global variables whenever possible.

Returning Character Data Types

If a Fortran program expects a function to return data of type CHARACTER, the
Fortran compiler adds two additional arguments to the beginning of the called
procedure's argument list:

« The first argument is a pointer to the location where the called procedure
should store the result.

- The second is the maximum number of characters that must be returned,
padded with white spaces if necessary.

The called routine must copy its result through the address specified in the first
argument. Example that follows shows the Fortran code for a return character
function called MAKECHARS and corresponding C routine.

Example of Returning Character Types from C to Fortran

Fortran code

CHARACTER* 10 CHARS, MAKECHARS

DOUBLE PRECI SION X, Y

CHARS = MAKECHARS(X, Y)

Correspondi ng C Routi ne

void makechars (result, length, x, y);
char *result;

int |ength;

doubl e *x, *y;

{

... programtext, producing returnval ue...
for (i =0; i <length; i++) {
result[i] = returnvalueli];

}
}
In the above example, the following restrictions and behaviors apply:

« The function's length and result do not appear in the call statement; they
are added by the compiler.

« The called routine must copy the result string into the location specified by
r esul t ; it must not copy more than | engt h characters.

- If fewer than | engt h characters are returned, the return location should be
padded on the right with blanks; Fortran does not use zeros to terminate
strings.

« The called procedure is type voi d.

210

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

» You must use lowercase names for C routines and | NTERFACE blocks to
make the calls using lower case.

Handling User-Defined Types

Fortran 95/90 supports user-defined types (data structures similar to C
structures). User-defined types can be passed in modules and common blocks
just as other data types, but the other language must know the type's structure.

For example:

Fortran Code:

TYPE LOTTA DATA
SEQUENCE
REAL A
| NTEGER B
CHARACTER(30) | NFO
COWPLEX CX
CHARACTER(80) MOREI NFO
END TYPE LOTTA DATA
TYPE (LOTTA DATA) D1, D2
COWON /T_BLOCK/ D1, D2

In the Fortran code above, the SEQUENCE statement preserves the storage
order of the derived-type definition.

C Code:

/* C code accessing DL and D2 */
extern struct {
struct {

float a;

int b;

char info[30];

struct {
float real, img;
} cx;

char norei nf o[80] ;

} dil, dz;
} t_block;

Intel Fortran/C Mixed-Language Programs

211

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

Intel Fortran/C Mixed-Language

Programs Overview

See these topics:
Compiling and Linking Mixed-Language Programs
Using Modules in Fortran/C Mixed-Language Programming

Calling C Procedures from an Intel Fortran Program

Compiling and Linking Intel Fortran/C

Programs

Your application can contain both C and Fortran source files. If your main
program is a Fortran source file (mypr og. f or) that calls a routine written in C
(cfunc. c), you can use the following sequence of commands to build your
application:

icc -c cfunc.c
ifort -o nmyprog myprog.for cfunc.o

The i cc (for Intel C++) command compiles cf unc. c. The - ¢ option specifies
that the linker is not called. This command creates cf unc. o. The i f ort
command compiles mypr og. f or and links cf unc. o with the object file created
from nmypr og. f or to create nypr og.

Using Modules in Fortran/C Mixed-

Language Programming

Modules are the simplest way to exchange large groups of variables with C,
because Intel Fortran modules are directly accessible from C/C++.

The following example declares a module in Fortran, then accesses its data from
C:

Fortran code

212

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

I FO0 Modul e definition
MODULE EXAMP
REAL A(3)
INTEGER 11, 12
CHARACTER(80) LI NE
TYPE MYDATA
SEQUENCE
| NTEGER N
CHARACTER(30) | NFO
END TYPE MYDATA
END MODULE EXAMP

C code

* C code accessing nodul e data *\
extern float examp_np_al 3];
extern int exanp_np_il, exanp_np_i?2;
extern char exanp_np_line[80];
extern struct {

int n;

char info[30];
} exanp_np_nydat a;

When the C++ code resides in a . cpp file, C++ semantics are applied to external
names, often resulting in linker errors. In this case, use the extern "C" syntax
(see C/C++ Naming Conventions):

* C code accessing nodule data in .cpp file*\
extern "C' float exanp_np_a[3];
extern "C' int exanp_np_i1l, exanp_np_i?2;
extern "C' char exanp_np_Iline[80];
extern "C' struct {

int n;

char info[30];
} exanp_np_nydat a;

You can also define a module procedure in C and make that routine part of a
Fortran module by using the ALIAS directive. The C code is:

/1 C procedure
voi d pythagoras (float a, float b, float *c)

{
}

*¢ = (float) sqgrt(a*a + b*b);

213

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

Using the same example when the C++ code resides in a . cpp file, use the
extern "C" syntax (see C/C++ Naming Conventions):

/1 C procedure
extern "C' void pythagoras (float a, float b, float *c)

{
}

*¢ = (float) sqgrt(a*a + b*b);

The Fortran code to define the module CPROC:

I Fortran 95/90 Mdul e including procedure
MODULE CPRCC
| NTERFACE
SUBROUTI NE PYTHAGCORAS (a, b, res)
I DEC$ ATTRI BUTES C :: PYTHAGORAS
I DEC$ ATTRI BUTES REFERENCE :: res
I res is passed by REFERENCE because its individual attribute
I overrides the subroutine's C attribute
REAL a, b, res
I a and b have the VALUE attribute by default because
I the subroutine has the C attribute
END SUBROUTI NE
END | NTERFACE
END MODULE

The Fortran code to call this routine using the module CPROC:

I Fortran 95/90 Modul e including procedure
USE CPRCC
CALL PYTHAGORAS (3.0, 4.0, X
TYPE *, X
END

Calling C Procedures from an Intel

Fortran Program

Naming Conventions

By default, the Fortran compiler converts function and subprogram names to
upper case. The C compiler never performs case conversion. A C procedure
called from a Fortran program must, therefore, be named using the appropriate
case. For example, consider the following calls:

214

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building

Applications
CALL PROCNAME() The C procedure must be named
PROCNANME.
X=FNNAME() The C procedure must be named
FNNANME

In the first call, any value returned by PROCNAME is ignored. In the second call to
a function, FNNAME must return a value.

Passing Arguments Between Fortran and C
Procedures

By default, Fortran subprograms pass arguments by reference; that is, they pass
a pointer to each actual argument rather than the value of the argument. C
programs, however, pass arguments by value. Consider the following:
When a Fortran program calls a C function, the C function's formal
arguments must be declared as pointers to the appropriate data type.

When a C program calls a Fortran subprogram, each actual argument
must be specified explicitly as a pointer.

Error Handling

Error Handling Overview

See these topics:

Run-Time Library Default Error Processing

Run-Time Environment Variables

Handling Run-Time Errors

Signal Handling

Overriding the Default Run-Time Library Exception Handler

Obtaining Traceback Information with TRACEBACKQQ

Run-Time Library Default Error

Processing

215

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

During execution, your program may encounter errors or exception conditions.
These conditions can result from any of the following:

« Errorsthat occur during 1/0O operations

+ Invalid input data

« Argument errorsin cals to the mathematical library
+ Arithmetic errors

+ Other system-detected errors

The Intel® Fortran Run-Time Library (RTL) generates appropriate messages and
takes action to recover from errors whenever possible.

A default action is defined for each error recognized by the Fortran RTL. The
default actions described throughout this chapter occur unless overridden by
explicit error-processing methods.

The way in which the Fortran RTL actually processes errors depends upon the
following factors:

« The severity of the error. For instance, the program usually continues executing
when an error message with a severity level of warning or info (informational) is
detected.

« For certain errors associated with |/O statements, whether or not an 1/0 error-
handling specifier was specified.

« For certain errors, whether or not the default action of an associated signal was
changed.

« For certain errors related to arithmetic operations (including floating-point
exceptions), compilation options can determine whether the error is reported and
the severity of the reported error.

How arithmetic exception conditions are reported and handled depends on the
cause of the exception and how the program was compiled. Unless the program
was compiled to handle exceptions, the exception might not be reported until
after the instruction that caused the exception condition. The following compiler
options are related to handling errors and exceptions:

« The -check bounds option generates extra code to catch certain
conditions.

« The -check noformat and - check noout put _conver si on options reduce
the severity level of the associated run-time error to allow program
continuation.

« The-f pen options control the handling and reporting of floating-point arithmetic
exceptions at run time.

+ The-warn xxxx,-u,-nowarn-w,and-wl options control compile-time
warning messages, which in some circumstances can help determine the cause of
arun-time error.

216

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

Run-Time Message Format

When errors occur during execution (run time) of a program, the Fortran RTL
issues diagnostic messages. These run-time messages have the following
format:

forrtl: severity (nnn): nessage-text
where:

- forrtl identifies the source as the Intel Fortran RTL.

- severity identifies the severity level: sever e, error, war ni ng, or
i nfo.

- nnn identifies the message number; also the IOSTAT value for I/0O
statements.

« nmessage-t ext explains the event that caused the message.

The severity levels are described in order of greatest to least severity:

+ A sever e message must be corrected. The program's execution is
terminated when the error is encountered, unless the program's I/O
statements use the END, EOR, or ERR branch specifiers to transfer
control, perhaps to a routine that uses the IOSTAT specifier.

- Anerror message should be corrected. The program might continue
execution, but the output from this execution may be incorrect.

« A war ni ng message should be investigated. The program continues
execution, but output from this execution may be incorrect.

« Ani nf o message is for informational purposes only. The program
continues.

For severe errors, stack trace information is produced by default, unless the
environment variable FOR DI SABLE_STACK_TRACE is set. If the command-line
option - t r aceback is set, the stack trace information contains program
counters set to symbolic information. Otherwise, the information contains merely
hexadecimal program counter information.

In some cases, stack trace information is also produced by the compiled code at
run time to provide details about the creation of array temporaries.

If FOR_DI SABLE_STACK_TRACE is set, no stack trace information is produced.

See the following example of stack trace information. The program generates an
error at line 12:

progr am ovf

217

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

real *4 x(5),y(5)

integer*4 i

X(1) = -1e32

x(2) = 1e38

x(3) = 1e38

x(4) = 1e38

x(5) = -36.0

do i=1,5

y(i) = 100.0*(x(i))
print *, 'x ="', x(i), ' x*100.0 = ",y(i)

end do

end

> ifort -Q0 -fpe0 -traceback ovf.f90 -0 ovf.exe

> ovf.exe

Xx = -1.0000000E+32 x*100.0 = -1.0000000E+34 (1)
forrtl: error (72): floating overfl ow

| mage PC Rout i ne Li ne Sour ce
ovf. exe 08049E4A NAIN__ 14 ovf.f90
ovf. exe 08049F08 Unknown Unknown Unknown
ovf. exe 400B3507 Unknown Unknown Unknown
ovf. exe 08049051 Unknow Unknown Unknown
Abor t

> setenv FOR DI SABLE _STACK TRACE true

> ovf.exe

X = -1.0000000E+32 x*100.0 = -1.0000000E+34

forrtl: error (72): floating overflow (2)
Abor t

The following information corresponds to the numbers at the right of the example:
(1) Stack trace information when the traceback information is present.

(2) No stack trace information, because the FOR_DI SABLE STACK TRACE
environment variable is set.

Message Catalog File Location

The Intel Fortran RTL uses a message catalog file to store the text associated
with each run-time message. When a run-time error occurs, the Fortran RTL
searches for the message catalog file at the following location (assuming that the
default location was chosen during installation):

218

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

/fusr/lib/ifcore_nsg.cat

However, if the environment variable NLSPATH is set to point to another location,
the RTL uses that location to find the message catalog file.

When using the C shell, you can set NLSPATH as follows:

setenv NLSPATH /<install ati on-pat h>/ %N

Before executing an Intel Fortran program on a system where Intel Fortran is not
installed, you need to copy the redistributable files from the appropriate locations
specified in the f r edi st . t xt file.

When a run-time error occurs on a system where the message file is not found,
the following messages may appear:

forrtl: info: Fortran error nessage number is nnn.
forrtl: warning: Could not open nmessage cat al og:

i fcore_nsg. cat.

forrtl: info: Check environnent variable NLSPATH and
protection of usr/lib/ifcore_nsg.cat

The Intel Fortran RTL returns an error number (displayed after the severity level)
that the calling program can use with an IOSTAT variable to handle various I/O
conditions.

For more information on NLSPATH, see the reference page environ(5) .

Values Returned to the Shell at Program
Termination

An Intel Fortran program can terminate in one of several ways:

+ The program runs to normal completion. A value of zero is returned to the shell.

« The program stops with a STOP or a PAUSE statement. A value of zero is
returned to the shell.

« The program stops because of asignal that is caught but does not allow the
program to continue. A value of 1 isreturned to the shell.

« The program stops because of a severe run-time error. The error number for that
run-time error is returned to the shell.

« Theprogram stopswith a CALL EXIT statement. The value passed to EXIT is
returned to the shell.

Forcing a Core Dump for Severe Errors

219

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

You can force a core dump for severe errors that do not usually cause a cor e file
to be created. Before running the program, set the decfort_dunp_fl ag
environment variable to any of the common TRUE values (Y, vy, Yes, yEs, True,
and so forth) to cause severe errors to create a cor e file. For instance, the
following C shell command sets the decf ort _dunp_f | ag environment variable:

setenv decfort _dunp flag y

The cor e file is written to the current directory and can be examined using a
debugger.

FlNote

If you requested a core file to be created on severe errors and you don't get
one when expected, the problem might be that your process limit for the
allowable size of a core file is set too low (or to zero). See the man page for
your shell for information on setting process limits. For example, the C shell
command | i m t (with no arguments) will report your current settings, and
[imt coredunpsize unlimted wilraise the allowable limit to your
current system maximum.

Handling Run-Time Errors

Whenever possible, the Intel Fortran RTL does certain error handling, such as
generating appropriate messages and taking necessary action to recover from
errors. You can explicitly supplement or override default actions by using the
following methods:

« Totransfer control to error-handling code within the program, use the ERR, EOR,
and END branch specifiersin 1/0O statements.

« Toidentify Fortran-specific I/O errors based on the value of Intel Fortran RTL
error codes, use the /O status specifier (IOSTAT) in 1/O statements (or call the
ERRSNS subroutine).

« Obtain system-level error codes by using the appropriate library routines.

 For certain error conditions, use the signal handling facility to change the default
action to be taken.

These error-processing methods are complementary; you can use any or all of
them within the same program to obtain Intel Fortran run-time and Linux* system
error codes.

Using the END, EOR, and ERR Branch Specifiers

220

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

When a severe error occurs during Intel Fortran program execution, the default
action is to display an error message and terminate the program. To override this
default action, there are three branch specifiers you can use in I/O statements to
transfer control to a specified point in the program:

« The END branch specifier handles an end-of-file condition.

« The EOR branch specifier handles an end-of-record condition for nonadvancing
reads.

« The ERR branch specifier handles al error conditions.

If you use the END, EOR, or ERR branch specifiers, no error message is
displayed and execution continues at the designated statement, usually an error-
handling routine.

You might encounter an unexpected error that the error-handling routine cannot
handle. In this case, do one of the following:

« Modify the error-handling routine to display the error message number
+ Removethe END, EOR, or ERR branch specifiers from the I/O statement that
causes the error

After you modify the source code, compile, link, and run the program to display
the error message. For example:

READ (8, 50, ERR=400)

If any severe error occurs during execution of this statement, the Intel Fortran
RTL transfers control to the statement at label 400. Similarly, you can use the
END specifier to handle an end-of-file condition that might otherwise be treated
as an error. For example:

READ (12, 70, END=550)

When using nonadvancing 1/O, use the EOR specifier to handle the end-of-
record condition. For example:

150 FORVAT (F10.2, F10.2, 16)
READ (UNI T=20, FMI=150, SIZE=X, ADVANCE=' NO , EOR=700) A,
F, |

You can also use ERR as a specifier in an OPEN, CLOSE, or INQUIRE
statement. For example:

OPEN (UNI T=10, FILE="FILNAM ,6 STATUS=' OLD , ERR=999)

221

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

If an error is detected during execution of this OPEN statement, control transfers
to the statement at label 999.

Using the IOSTAT Specifier

You can use the IOSTAT specifier to continue program execution after an 1/O
error and to return information about I/O operations. Certain errors are not
returned in IOSTAT.

The IOSTAT specifier can supplement or replace the END, EOR, and ERR
branch transfers. Execution of an 1/0 statement containing the IOSTAT specifier
suppresses the display of an error message and defines the specified integer
variable, array element, or scalar field reference as one of the following:

« A vaueof -2 if an end-of-record condition occurs with nonadvancing reads.

« Avaueof -1if an end-of-file condition occurs.

« A vaue of 0for normal completion (not an error condition, end-of-file, or end-of-
record condition).

« A positive integer value if an error condition occurs. (This value is one of the
Fortran-specific IOSTAT numbers listed in the run-time error message. See un-
Time Error Messages.

Following the execution of the 1/0O statement and assignment of an IOSTAT
value, control transfers to the END, EOR, or ERR statement label, if any. If there
is no control transfer, normal execution continues.

You can include / opt /intel _fc_80/incl ude/ f or _i osdef . for in your program to
obtain symbolic definitions for the values of IOSTAT.

The following example uses the IOSTAT specifier and the f or _i osdef . f or file to
handle an OPEN statement error (in the FILE specifier):

CHARACTER(LEN=40) :: FILNM
| NCLUDE ' for iosdef.for'

DO 1=1,4

FILNM = "'

VWRITE (6,*) 'Type file nane '

READ (5,*) FILNM

OPEN (UNI T=1, FILE=FILNM STATUS=' QLD , | OSTAT=Il ERR,
ERR=100)

WRITE (6,*) 'Opening file: ', FILNM
! (process the input file)

CLCSE (UNI T=1)

STOP

222

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building

Applications
100 |F (1ERR .EQ FOR$I CS_FI LNOTFQU) THEN
WRITE (6,*) "File: ', FILNM ' does not exist '
ELSE IF (I ERR . EQ FORS$I OS_FI LNAVSPE) THEN
WRITE (6,*) "File: ', FILNM ' was bad, enter new
file nane'
ELSE
PRI NT *, 'Unrecoverable error, code =, |IERR
STOP
END | F
END DO
WRITE (6,*) 'File not found. Type Is to find file and
run again'
END PROGRAM

Another way to obtain information about an error is the ERRSNS subroutine,
which allows you to obtain the last I/O system error code associated with an Intel
Fortran RTL error (see the Intel Fortran Language Reference).

Signal Handling

A signal is an abnormal event generated by one of various sources, such as:

« A user of aterminal

« Program or hardware error

« Request of another program

« When aprocess is stopped to allow access to the control terminal

You can optionally set certain events to issue signals, for example:

« When a process resumes after being stopped

« When the status of a child process changes

« When input isready at the terminal
Some signals terminate the receiving process if no action is taken (optionally
creating a cor e file), while others are simply ignored unless the process has
requested otherwise.
Except for certain signals, calling the si gnal or si gacti on routine allows
specified signals to be ignored or causes an interrupt (transfer of control) to the
location of a user-written signal handler.

You can establish one of the following actions for a signal with a call to si gnal :

« Ignore the specified signal (identified by number).

223

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

+ Usethe default action for the specified signal, which can reset a previously
established action.

« Transfer control from the specified signal to a procedure to receive the signdl,
specified by name.

Calling the si gnal routine lets you change the action for a signal, such as
intercepting an operating system signal and preventing the process from being
stopped.

The table below shows the signals that the Intel Fortran RTL arranges to catch
when a program is started:

Signal Intel Fortran RTL message

SIGFPE Fl oat i ng- poi nt exception (number
75)

SIGINT Process interrupted (number 69)
SIGIOT | OT trap signal (number 76)
SIGQUIT Process quit (number 79)
SIGSEGV Segnent ation fault (number 174)
SIGTERM Process kil led (number 78)

Calling the si gnal routine (specifying the numbers for these signals) results in
overwriting the signal-handling facility set up by the Intel Fortran RTL. The only

way to restore the default action is to save the returned value from the first call to
signal .

When using a debugger, it may be necessary to enter a command to allow the
Intel Fortran RTL to receive and handle the appropriate signals.

Overriding the Default Run-Time

Library Exception Handler

To override the default run-time library exception handler, your application must
call si gnal to change the action for the signal of interest.

For example, assume that you want to change the signal action to cause your
application to call abort () and generate a cor e file.

The following example adds a function named cl ear _si gnal _ to call
si gnal () and change the action for the SIGABRT signal:

#i ncl ude <signal . h>
voi d clear_signal ()

224

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

signal (SIGABRT, SIG DFL);
}
int myabort ()

abort ();
return O;

}

A call to the cl ear _si gnal () local routine must be added to mai n. Make sure
that the call appears before any call to the local myabort () routine:

program aborts
i nteger i

call clear_signal ()

i =3

if (i <5) then
call nyabort ()

end if

end

Obtaining Traceback Information with

TRACEBACKQQ

You can obtain traceback information in your application by calling the
TRACEBACKQQ routine.

TRACEBACKQQ allows an application to initiate a stack trace. You can use this
routine to report application detected errors, use it for debugging, and so on. It
uses the standard stack trace support in the Intel Fortran run-time system to
produce the same output that the run-time system produces for unhandled errors
and exceptions (severe error message). The TRACEBACKQQ subroutine
generates a stack trace showing the program call stack as it was leading up to
the point of the call to TRACEBACKQQ.

The error message string normally included from the run-time support is replaced
with the user-supplied message text or omitted if no user string is specified.
Traceback output is directed to the target destination appropriate for the
application type, just as it is when traceback is initiated internally by the run-time
support.

In the most simple case, a user can generate a stack trace by coding the call to
TRACEBACKQQ with no arguments:

225

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

CALL TRACEBACKQY)

This call causes the run-time library to generate a traceback report with no
leading header message, from wherever the call site is, and terminate execution.

You can specify arguments that generate a stack trace with the user-supplied

string as the header and instead of terminating execution, return control to the
caller to continue execution of the application. For example:

CALL TRACEBACKQQ STRI NG="Done with pass 1", USER EXI T_CODE=- 1)
By specifying a user exit code of -1, control returns to the calling program.
Specifying a user exit code with a positive value requests that specified value be

returned to the operating system. The default value is 0, which causes the
application to abort execution.

Using Libraries

Using Libraries Overview

See these topics:
Libraries Provided by Intel Fortran
Portability Library Overview

Math Libraries Overview

Libraries Provided by Intel Fortran

Intel Fortran provides different types of libraries, such as static or DLL, single-
threaded or multi-threaded, for certain libraries.

The table below shows the libraries provided by the compiler:

File Description
crtxi.o
crtxn.o

for _main.o

icrt.internal.mp
icrt.link

i fcore_nsg. cat
l'ibcprts.a C++ standard language library.

226

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building

Applications
libcprts.so
libcprts.so.5
l'i bcxa. a C++ language library indicating 1/0 data location.
l'i bcxa. so
l'i bcxa.so.5

i bcxaguard. a
| i bcxaguard. so
| i bcxaguard. so. 5

|'i bgui de. a OpenMP* static library for the parallelizer tool

I i bgui de. so

l'i bgui de_stats. a Support for parallelizer tool with performance and profile
| i bgui de_st at s. SO jnformation

l'ibifcore.a Intel-specific Fortran run-time library
l'i bifcore.so
l'i bifcore.so.5

l'ibifcorent.a Multithreaded Intel-specific Fortran run-time library
[ibifcorent.so
libifcorent.so.5

l'ibifport.a Portability and POSIX support

l'ibifport.so

[ibifport.so.5

libinf.a Math library

['ibinf.so

libirc.a Intel-specific library (optimizations)

libircnt.a Multithreaded Intel-specific library (optimizations)

l'i bonpst ub. a Library that resolves references to OMP subroutines
when OMP is not in use

[ibsvm . a Short vector math library

i bunwi nd. a Unwind support

i bunwi nd. so
i bunwi nd. so. 5

Portability Library

Portability Library Overview

Intel® Fortran includes functions and subroutines that ease porting of code to or
from a PC, or allow you to write code on a PC that is compatible with other
platforms. The portability library is called | i bi f port . a. Frequently used
functions are included in a portability module called IFPORT.

See these topics:

Using the Portability Library libifport.a

227

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

Portability Routines

Using the Portability Library

libifport.a

You can use the portability library | i bi f port . a in one of two ways:

« Add the statement USE IFPORT to your program. This statement includes
the portability library I i bi f port. a.
« Call portability routines using the correct parameters and return value.

I'i bi fport. ais passed to the linker by default during linking. To prevent
I'i bi fport. afrom being passed to the linker, specify the - f psconp nol i bs
option.

Using the | i bi f port . a portability library provides interface blocks and
parameter definitions for the routines, as well as compiler verification of calls.

Some routines in this library can be called with different sets of arguments, and
sometimes even as a function instead of a subroutine. In these cases, the
arguments and calling mechanism determine the meaning of the routine. The

I i bi fport. a portability library contains generic interface blocks that give
procedure definitions for these routines.

Fortran 95/90 contains intrinsic procedures for many of the portability functions.
The portability routines are extensions to the Fortran 95 standard. When writing

new code, use Fortran 95/90 intrinsic procedures whenever possible (for
portability and performance reasons).

Portability Routines

This section describes some of the portability routines and how to use them.

For a complete list of the routines, see the table of Portability Routines in the
Overview chapter of the Intel Fortran Libraries Reference.

Information Retrieval Routines

Information retrieval routines return information about system commands,
command-line arguments, environment variables, and process or user
information.

228

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

Group, user, and process ID are INTEGER(4) variables. Login name and host
name are character variables. The functions GETGID and GETUID are provided
for portability, but always return 1.

Process Control Routines

Process control routines control the operation of a process or subprocess. You
can wait for a subprocess to complete with either SLEEP or ALARM, monitor its
progress and send signals via KILL, and stop its execution with ABORT.

In spite of its name, KILL does not necessarily stop execution of a program.
Rather, the routine signaled could include a handler routine that examines the
signal and takes appropriate action depending on the code passed.

Note that when you use SYSTEM, commands are run in a separate shell.
Defaults set with the SYSTEM function, such as current working directory or
environment variables, do not affect the environment the calling program runs in.

The portability library does not include the FORK routine. On Linux* systems,
FORK creates a duplicate image of the parent process. Child and parent
processes each have their own copies of resources, and become independent
from one another.

Numeric Values and Conversion Routines

Numeric values and conversion routines are available for calculating Bessel
functions, data type conversion, and generating random numbers.

Some of these functions have equivalents in standard Fortran 95/90. Data object
conversion can be accomplished by using the INT intrinsic function instead of
LONG or SHORT. The intrinsic subroutines RANDOM_NUMBER and
RANDOM_SEED perform the same functions as the random number functions
listed in the table showing numeric values and conversion routines.

Other bit manipulation functions such as AND, XOR, OR, LSHIFT, and RSHIFT
are intrinsic functions. You do not need the IFPORT module to access them.
Standard Fortran 95/90 includes many bit operation routines. These routines are
listed in Chapter 9 of the Language Reference, in table 9-2, under Category Bit.

Input and Output Routines

The portability library contains routines that change file properties, read and write
characters and buffers, and change the offset position in a file. These input and
output routines can be used with standard Fortran input or output statements

229

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

such as READ or WRITE on the same files, provided that you take into account
the following:

« When used with direct files, after an FSEEK, GETC, or PUTC operation,
the record number is the number of the next whole record. Any
subsequent normal Fortran I/O to that unit occurs at the next whole
record. For example, if you seek to absolute location 1 of a file whose
record length is 10, the NEXTREC returned by an INQUIRE would be 2. If
you seek to absolute location 10, NEXTREC would still return 2.

+ On units with CARRIAGECONTROL="FORTRAN' (the default), PUTC and
FPUTC characters are treated as carriage control characters if they
appear in column 1.

« On sequentially formatted units, the C string "\n"c, which represents the
carriage return/line feed escape sequence, is written as CHAR(13)
(carriage return) and CHAR(10) (line feed), instead of just line feed, or
CHAR(210). On input, the sequence 13 followed by 10 is returned as just
10. (The length of character string "\n"c is 1 character, whose ASCII value,
indicated by ICHAR("\n'c), is 10.)

« Reading and writing is in a raw form for direct files. Separators between
records can be read and overwritten. Therefore, be careful if you continue
using the file as a direct file.

I/O errors arising from the use of these routines result in an Intel Visual Fortran
run-time error.

Some portability file /O routines have equivalents in standard Fortran 95/90. For
example, you could use the ACCESS function to check a file specified by name
for accessibility according to mode. It tests a file for read, write, or execute
permission, as well as checking to see if the file exists. It works on the file
attributes as they exist on disk, not as a program's OPEN statement specifies
them.

Instead of ACCESS, you can use the INQUIRE statement with the ACTION
parameter to check for similar information. (The ACCESS function always returns
0 for read permission on FAT files, meaning that all files have read permission.)

Date and Time Routines

Various date and time routines are available to determine system time, or convert
it to local time, Greenwich Mean Time, arrays of date and time elements, or an
ASCII character string.

DATE and TIME are available as either a function or subroutine. Because of the

name duplication, if your programs do not include the USE IFPORT statement,
each separately compiled program unit can use only one of these versions. For

230

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

example, if a program calls the subroutine TIME once, it cannot also use TIME
as a function.

Standard Fortran 95/90 includes date and time intrinsic subroutines.

Error Handling Routines

Error handling routines detect and report errors.

IERRNO error codes are analogous to er r no on UNIX systems. The IFPORT
module provides parameter definitions for many of UNIX's er r no names, found
typically in er r no. h on UNIX systems.

IERRNO is updated only when an error occurs. For example, if a call to the
GETC function results in an error, but two subsequent calls to PUTC succeed, a
call to IERRNO returns the error for the GETC call. Examine IERRNO
immediately after returning from one of the portability library routines. Other
standard Fortran 90 routines might also change the value to an undefined value.

If your application uses multithreading, remember that IERRNO is set on a per-
thread basis.

System, Drive, or Directory Control and Inquiry
Routines

You can retrieve information about devices, directories, and files with these
routines.

Standard Fortran 90 provides the INQUIRE statement, which returns detailed file
information either by file name or unit number. Use INQUIRE as an equivalent to
FSTAT, LSTAT or STAT. LSTAT and STAT return the same information; STAT is
the preferred function.

Additional Routines

You can also use portability routines for program call and control, keyboards and
speakers, file management, arrays, floating-point inquiry and control, IEEE*
functionality, and other miscellaneous uses. See the table of Portability Routines
in the Overview chapter of the Intel Fortran Libraries Reference.

Math Libraries

231

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

I i bi nf. ais the math library provided by Intel and | i bm a is the math library
provided with gcc*.

Both of these libraries are linked in by default on IA-32 and Itanium® -based
compilers. Both libraries are linked in because there are math functions
supported by the GNU math library that are not in the Intel math library. This
linking arrangement allows the GNU users to have all functions available when
using i f ort, with Intel optimized versions available when supported.

['1binf.aislinked in beforel i bm a. If you linkin | i bm a first, it will change
the versions of the math functions that are used.

It is recommended that you place | i bi nf . a in the first directory specified in the
LD LI BRARY_PATHvariable. The l i bi nf.aand | i bm a libraries are always
linked with Fortran programs.

For example, if you place a library in directory /per f or m, set the
LD LI BRARY_PATH variable to specify a list of directories, containing all other
libraries, separated by semicolons.

libimf.a on the 1A-32 Compiler

For the IA-32 compiler, | i bi nf . a contains both generic math routines and
versions of the math routines optimized for special use with the Intel Pentium® 4
and Intel® Xeon™ processors.

libimf.a on the Itanium-Based Compiler

For the Itanium-based compiler, | i bi nf . a is optimized for use with the Itanium
architecture. The compiler provides inlined versions of math library primitives and

schedules the generated code with surrounding instructions. This can improve
the performance of typical floating-point applications.

Reference Information

Compile-Time Environment Variables

The compile-time environment variables are:

- FPATH
The path for include and module files.
« | FORTCFG

The configuration file to use instead of the default configuration file.

232

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

. LD LI BRARY_PATH

The path for shared (.so) library files.
- PATH

The path for compiler executable files.

- TMP, TMPDI R, TEMP
Specifies the directory in which to store temporary files. See Temporary
Files Created by the Compiler or Linker.

Run-Time Environment Variables

The Intel Fortran run-time system recognizes several environment variables.
These variables can be used to customize run-time diagnostic error reporting, for
example.

The run-time environment variables are:

« decfort_dunmp_fl ag
If this variable is setto Y or y, a core dump will be taken when any severe
Intel Fortran run-time error occurs.

« F_UFMIENDI AN
This variable specifies the numbers of the units to be used for little-endian-
to-big-endian conversion purposes. See Environment Variable
F_UFMTENDIAN Method.

« FOR_ACCEPT
The ACCEPT statement does not include an explicit logical unit number.
Instead, it uses an implicit internal logical unit number and the
FOR_ACCEPT environment variable. If FOR_ACCEPT is not defined, the
code ACCEPT f,iolist reads from st di n (standard input). If FOR_ACCEPT
is defined (as a file name optionally containing a path), the specified file

would be read.
« FOR DI AGNCSTI C LOG FI LE

If this variable is set to the name of a file, diagnostic output is written to the
specified file.
The Fortran run-time system attempts to open that file (append output)
and write the error information (ASCII text) to the file.
The setting of FOR_DI AGNOSTI C_LOG _FI LE is independent of
FOR_DI SABLE_ DI AGNOSTI C_DI SPLAY, so you can disable the screen
display of information but still capture the error information in a file. The
text string you assign for the file name is used literally, so you must
specify the full name. If the file open fails, no error is reported and the run-
time system continues diagnostic processing.

«+ FOR_DI SABLE_DI AGNOSTI C_DI SPLAY
Disables the display of all error information.
This variable is helpful if you just want to test the error status of your

233

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

program and do not want the Fortran run-time system to display any
information about an abnormal program termination.

- FOR_DI SABLE_STACK_TRACE
This variable disables the call stack trace information that follows the
displayed severe error message text.
The Fortran run-time error message is displayed whether or not
FOR DI SABLE_STACK TRACE is set to true.

- FOR_| GNORE_EXCEPTI ONS
This variable disables the default run-time exception handling, for
example, to allow just-in-time debugging. The run-time system exception
handler returns EXCEPTION_CONTINUE_SEARCH to the operating
system, which looks for other handlers to service the exception.

« FOR_NCERROR_DI ALOGS
This variable disables the display of dialog boxes when certain exceptions
or errors occur. This is useful when running many test programs in batch
mode to prevent a failure from stopping execution of the entire test
stream.

- FOR_PRI NT
Neither the PRINT statement nor a WRITE statement with an asterisk (*)
in place of a unit number includes an explicit logical unit number. Instead,
both use an implicit internal logical unit number and the FOR_PRI NT
environment variable. If FOR_PRI NT is not defined, the code PRI NT
f,iolist Or WRITE (*,f) iolist writesto st dout (standard output). If
FOR_PRI NT is defined (as a filename optionally containing a path), the
specified file would be written to.

- FOR_READ
A READ statement that uses an asterisk (*) in place of a unit number does
not include an explicit logical unit number. Instead, it uses an implicit
internal logical unit number and the FOR_READ environment variable. If
FOR_READ is not defined, the code READ (*,f) iolist Or READ f,ioli st
reads from st di n (standard input). If FOR_READ is defined (as a filename

optionally containing a path), the specified file would be read.
- FOR_TYPE

The TYPE statement does not include an explicit logical unit number.

Instead, it uses an implicit internal logical unit number and the FOR_TYPE
environment variable. If FOR_TYPE is not defined, the code TYPE f,i ol i st
writes to st dout (standard output). If FOR_TYPE is defined (as a filename

optionally containing a path), the specified file would be written to.

« FORT_BUFFERED
Lets you request that buffered I/O should be used at run time for output of
all Fortran 1/0O units, except those with output to the terminal. This provides
a run-time mechanism to support the - assune buffered i o
conpi | er option.

- FORT_CONVERTN
Lets you specify the data format for an unformatted file associated with a

234

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

particular unit number (n). See Methods of Specifying the Data Format:
Overview and Environment Variable FORT_CONVERTN Method.

+ FORT_CONVERT. ext and FORT_CONVERT _ext
Lets you specify the data format for unformatted files with a particular file
extension suffix (ext). See Methods of Specifying the Data Format:
Overview and Environment Variable FORT_CONVERT.ext or
FORT_CONVERT_ext Method.

« FORTNn
Lets you specify the file name for a particular unit number (n), when a file
name is not specified in the OPEN statement or an implicit OPEN is used,
and the compiler option - f psconp fi | esfrontnd was not specified.
Preconnected files attached to units 0, 5, and 6 are by default associated

with system standard 1/O files.
« NLSPATH

The path for the Intel Fortran run-time error message catalog.

« TBK_ENABLE VERBOSE_STACK TRACE
This variable displays more detailed call stack information in the event of
an error.
The default brief output is usually sufficient to determine where an error
occurred. Brief output includes up to twenty stack frames, reported one
line per stack frame. For each frame, the image name containing the PC,
routine name, line number, and source file are given.
The verbose output, if selected, will provide (in addition to the information
in brief output) the exception context record if the error was a machine
exception (machine register dump), and for each frame, the return
address, frame pointer and stack pointer and possible parameters to the
routine. This output can be quite long (but limited to 16K bytes) and use of
the environment variable FOR_DI AGNOSTI C_LOG _FI LE is recommended
if you want to capture the output accurately. Most situations should not
require the use of verbose output.
The variable FOR_ENABLE_VERBOSE STACK TRACE is also recognized
for compatibility with Compag* Fortran.

- TBK_FULL_SRC FI LE_SPEC
This variable displays complete file name information for traceback output,
including the path.
By default, the traceback output displays only the file name and extension
in the source file field. You must set this variable to display more.
The variable FOR_FULL_SRC FI LE_SPEC s also recognized for
compatibility with Compaqg* Fortran.

« TMP, TMPDI R, and TEMP
Specifies an alternate working directory where temporary files are created.
See Temporary Files Created by the Compiler or Linker.

Key IA-32 Compiler Files Summary

235

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

The following table shows files that are installed for use by the 1A-32 compiler in
[opt/intel fc_80/bin:

File Description

codecov Executable for the Code-coverage tool
fortcom Executable used by the compiler

fpp Fortran Preprocessor

ifc For compatibility with previous releases
ifc.cfg For compatibility with previous releases
ifort Intel Fortran Compiler Version 8
ifortbin Executable used by the compiler
ifort.cfg Configuration file

i fortvars. csh Setup file for C shell
i fortvars. sh Setup file for bash shell

pr of mer ge Utility used for Profile Guided Optimizations
pr of or der Utility used for Profile Guided Optimizations
t sel ect Test-prioritization tool

uni nstal I . sh Uninstall utility

Xi ar Tool used for Interprocedural Optimizations
xild Tool used for Interprocedural Optimizations

For a list of the files installed in / | i b, see Libraries Provided by Intel Fortran.

Key Itanium®-Based Compiler Files

Summary

The following table shows files that are installed for use by the Itanium® -based
compilerin/opt/intel fc_80/bin:

File Description

codecov Executable for the Code-coverage tool
efc For compatibility with previous releases
efc.cfg For compatibility with previous releases
ef cbin For compatibility with previous releases
fortcom Executable used by the compiler

fpp Fortran Preprocessor

i as Intel assembler

ifort Intel Fortran Compiler Version 8
ifort.cfg Configuration file

236

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

ifortbin Executable used by the compiler
i fortvars. csh Setup file for C shell
i fortvars. sh Setup file for bash shell

pr of dcg

pr of mer ge Utility used for Profile Guided Optimizations
prof or der Utility used for Profile Guided Optimizations
t sel ect Test-prioritization tool

uni nstal |l .sh Uninstall utility

Xi ar Tool used for Interprocedural Optimizations
xild Tool used for Interprocedural Optimizations

For a list of files installed in / | i b, see Libraries Provided by Intel Fortran.

Compiler Limits

The amount of data storage, the size of arrays, and the total size of executable
programs are limited only by the amount of process virtual address space
available, as determined by system parameters.

The table below shows the limits to the size and complexity of a single Intel
Fortran program unit and to individual statements contained within it:

Language Element Limit

Actual number of arguments per CALL | Limited only by memory constraints
or function reference

Arguments in a function reference 255

in a specification expression

Array dimensions 7

Array construction nesting 20

Array elements per dimension 9,223,372,036,854,775,807 =

2**31-1 on IA-32 systems;
2**63-1 Itanium-based systems;
plus limited by current memory
configuration

Constants: character and Hollerith 7198 characters

Constants: characters read in list- 2048 characters

directed I/O

Continuation lines 511

Data and 1/O implied DO nesting 7

DO and block IF statement nesting 128

(combined)

DO loop index variable 9,223,372,036,854,775,807 = 2**63-

237

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

1
Format group nesting 8
Format statement length 2048 characters
Fortran source line length fixed form: 72 (or 132 if
- ext end_sour ce is in effect)
characters;
free form: 7200 characters
INCLUDE file nesting 20 levels

Labels in computed or assigned GOTO | Limited only by memory constraints
list

Lexical tokens per statement 20000

Named common blocks Limited only by memory constraints
Nesting of array constructor implied 7

DOs

Nesting of input/output implied DOs 7

Nesting of interface blocks Limited only by memory constraints
Nesting of DO, IF, or CASE constructs | Limited only by memory constraints
Nesting of parenthesized formats Limited only by memory constraints
Number of digits in a numeric constant | Limited only by memory constraints
Parentheses nesting in expressions Limited only by memory constraints
Structure nesting 30

Symbolic name length 63 characters

See the product Release Notes for more information on memory limits for large
data objects.

Hexadecimal-Binary-Octal-Decimal

Conversions

The following table lists hexadecimal, binary, octal, and decimal conversion:

Hex Number Binary Number Octal Number Decimal Number

0 0000 00 0
1 0001 01 1
2 0010 02 2
3 0011 03 3
4 0100 04 4
5 0101 05 5

238

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building

Applications
6 0110 06 6
7 0111 07 7
8 1000 10 8
9 1001 11 9
A 1010 12 10
B 1011 13 11
C 1100 14 12
D 1101 15 13
E 1110 16 14
F 1111 17 15

Compatibility with Previous Versions

of Intel® Fortran

This topic is written for developers who are familiar with Intel Fortran Version 7.1
or earlier versions are now using Intel Fortran Version 8.

Intel® Fortran supports extensions to the ISO and ANSI standards, including a
number of extensions defined by:

+ Intel Fortran for various platforms
« Microsoft* Fortran PowerStation 4.0

Many language extensions associated with Microsoft* Fortran PowerStation
Version 4 have been added to Intel Fortran.

Differences Between Intel Fortran Version 7.1 and
Intel Fortran Version 8

Some differences are:

« The command name for command-line use is now i f or t . Earlier versions
of Intel Fortran used a command name of i f ¢ or ef c. For Intel Fortran
8.0, these command names will still be accepted, but in some future Intel
Fortran release, only the i f ort command name will be accepted.

« The default configuration file name is now i f ort. cf g instead of
ifl.cfgorefl.cfqg.

239

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

« The predefined symbol name for the Intel Fortran compiler is
__INTEL_COMPILER and it has a value of 800.

« The record length (RECL specifier) for unformatted files is now 32-bit
words. To get the record length in bytes, use the / assune: byt er ecl
option.

« The backslash character (\) is not treated as an escape character for
control sequences in character literals. To force the backslash to start
escape sequences, use the / assune: bscc option.

« Intel Fortran Version 8 by default uses the integer -1 for the value of
.TRUE. whereas Version 7 uses the integer 1 for the value of .TRUE.. If
you use the - f psconp | ogi cal s option with Version 8, the compiler will
use the integer 1 for the value of .TRUE..

Version 8 always uses the integer 0 as the value of .FALSE., as did
Version 7.

User-written routines in Fortran or other languages (for example, C) need
to insure that they use values for .TRUE. and .FALSE. consistent with the
compiler's choice.

« The random number generator used in Version 8 is different from the
random number generator used in Version 7.

Version 8 uses the random number generator based on the algorithm of
Park and Miller, which is the generator used by Compaq Fortran. Version
7 used the Marsaglia random number generator.

Both of these random number generators are compatible with the Fortran
90 standard.

In addition, Version 8 uses different algorithms for the
RANDOM_NUMBER and RANDOM_SEED intrinsics (compared to
Version 7) and different algorithms are used for these intrinsics on 1A32
and Itanium-based systems.

Documentation Information

Some documentation has been moved. In particular:

« The Intel Fortran User’s Guide now has separate parts for Building
Applications and Optimizing Applications.

+ Intel Fortran language information previously described in the Intel Fortran
Programmer’s Reference, including intrinsics procedures and directives, is
now described in the online Language Reference.

- All Intel Fortran language elements and library routines are described in
this online help file, allowing easy lookup of reference information.

Version 7.1 Features Not Available in Intel Visual
Fortran Version 8

240

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

The following Intel Fortran Version 7.1 features are not available in Intel Visual
Fortran Version 8:

« IMPLICIT AUTOMATIC | STATIC statements
« The Intel Fortran 8.0 run-time library system's ability to work with the
Itanium processor simulator

Run-Time Error Messages

The table below lists the errors processed by the Intel Fortran run-time library
(RTL). For each error, the table provides the error number, the severity code,
error message text, condition symbol name, and a detailed description of the
errors.

To define the condition symbol values (PARAMETER statements) in your
program, include the following file:

[opt/intel fc_80/include/for_iosdef.f

As described in the table, the severity of the message determines which of the
following occurs:: program execution continues with i nf o and war ni ng, the
results might be incorrect with er r or , and program execution stops (unless a
recovery method is specified) with sever e. In the last case, to prevent program
termination, you must include either an appropriate 1/0O error-handling specifier
and recompile or, for certain errors, change the default action of a signal before
you run the program again.

The first column lists error numbers returned to IOSTAT variables when an 1/O
error is detected.

The first line of the second column provides the message as it is displayed
(following f or r t | :), including the severity level, message number, and the
message text. The following lines of the second column contain the status
condition symbol (such as FOR$IOS INCRECTYP) and an explanation of the
message.

Number Severity Level, Number, and Message Text;
Condition Symbol and Explanation
None 'info: Fortran error nmessage nunber is nnn

The Intel Fortran message catalog file was not found on

this system. See Message Catalog File Location. This
error has no condition symbol.

241

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

None twarni ng: Coul d not open nessage catal og:
for_msg. cat

The Intel Fortran message catalog file was not found on
this system. See Message Catalog File Location. This

error has no condition symbol.
None ti nfo: Check environnment variable NLSPATH and
protection of pathnane/for_nsg. cat

The Intel Fortran message catalog file was not found.
See Message Catalog File Location. This error has no

condition symbol.

None !l nsufficient nmenmory to open Fortran RTL catal og:
message 41

The Intel Fortran message catalog file could not be
opened because of insufficient virtual memory. To
overcome this problem, increase the per-process data
limit by using the 1init (C shell) orulinit (Bourne and
Korn and bash shells) commands before running the
program again.

For more information, see error 41. This error has no
condition symbol.
1 tsevere (1): Not a Fortran-specific error

FORS$IOS_NOTFORSPE. An error in the user program or
in the RTL was not a Intel Fortran-specific error and was
not reportable through any other Intel Fortran run-time
messages. If you call ERRSNS, an error of this kind
returns a value of 1 (for more information on the
ERRSNS subroutine, see the Intel Fortran Language
Reference Manual).

gsevere (8): Internal consistency check failure

FORS$IOS BUG_CHECK. Internal error. Please check
that the program is correct. Recompile if an error existed
in the program. If this error persists, submit a problem

report.
gsevere (9): Pernmission to access file denied

FOR$IOS_PERACCEFIL. Check the mode (protection) of
the specified file. Make sure the correct file was being
accessed. Change the protection, specified file, or

process used before rerunning program.
10severe (10): Cannot overwite existing file

242

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building

FORS$IOS_CAOVEEXI. Specified file xxx already exists
when OPEN statement specified STATUS=' NEW"
(create new file) using I/O unit x. Make sure correct file
name, directory path, unit, and so forth were specified in
the source program. Decide whether to:

+ Rename or remove the existing file before
rerunning the program.

« Modify the source file to specify different file
specification, 1/0 unit, or OPEN statement
STATUS.

11info (11) * Unit not connected
FORS$IOS_UNINOTCON. The specified unit was not
open at the time of the attempted 1/0O operation. Check if
correct unit number was specified. If appropriate, use an
OPEN statement to explicitly open the file (connect the

file to the unit number).
17severe (17): Syntax error in NAMELI ST i nput

FORS$IOS_SYNERRNAM. The syntax of input to a

namelist-directed READ statement was incorrect.
18severe (18): Too many val ues for NAMELI ST vari abl e

FORS$IOS_TOOMANVAL. An attempt was made to
assign too many values to a variable during a namelist

READ statement.

19severe (19): Invalid reference to variable in
NAMELI ST i nput

FORS$IOS_INVREFVAR. One of the following conditions
occurred:

« The variable was not a member of the namelist

group.

« An attempt was made to subscript a scalar
variable.

« A subscript of the array variable was out-of-
bounds.

« An array variable was specified with too many or
too few subscripts for the variable.

« An attempt was made to specify a substring of a
noncharacter variable or array name.

« A substring specifier of the character variable was
out-of-bounds.

Applications

243

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

« A subscript or substring specifier of the variable
was not an integer constant.

« An attempt was made to specify a substring by
using an unsubscripted array variable.

20severe (20): REWND error

FOR$IOS_REWERR. One of the following conditions
occurred:

« The file was not a sequential file.

« The file was not opened for sequential or append
access.

« The Intel Fortran RTL 1/O system detected an
error condition during execution of a REWIND
statement.

21severe (21): Duplicate file specifications

FORS$IOS_DUPFILSPE. Multiple attempts were made to
specify file attributes without an intervening close
operation. A DEFINE FILE statement was followed by

another DEFINE FILE statement or an OPEN statement
22severe (22): Input record too |ong

FORS$IOS_INPRECTOO. A record was read that
exceeded the explicit or default record length specified
when the file was opened. To read the file, use an OPEN
statement with a RECL= value (record length) of the

appropriate size.
23severe (23): BACKSPACE error

FORS$IOS_BACERR. The Intel Fortran RTL I/O system
detected an error condition during execution of a

BACKSPACE statement.
24 tsevere (24): End-of-file during read

FOR$IOS_ENDDURREA. One of the following conditions
occurred:

« Alntel Fortran RTL I/O system end-of-file
condition was encountered during execution of a
READ statement that did not contain an END,
ERR, or IOSTAT specification.

+ An end-of-file record written by the ENDFILE
statement was encountered during execution of a

244

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

READ statement that did not contain an END,
ERR, or IOSTAT specification.

« An attempt was made to read past the end of an
internal file character string or array during
execution of a READ statement that did not
contain an END, ERR, or IOSTAT specification.

This error is returned by END and ERRSNS.
o5severe (25): Record nunber outside range

FOR$IOS RECNUMOUT. A direct access READ,
WRITE, or FIND statement specified a record number

outside the range specified when the file was opened.
26severe (26): OPEN or DEFINE FILE required

FORS$IOS_OPEDEFREQ. A direct access READ,
WRITE, or FIND statement was attempted for a file when
no prior DEFINE FILE or OPEN statement with

ACCESS=" DIRECT ' was performed for that file.
27severe (27): Too nmany records in I/O statement

FOR$IOS_TOOMANREC. An attempt was made to do
one of the following:

+ Read or write more than one record with an
ENCODE or DECODE statement.
» Write more records than existed.

2gsevere (28): CLOSE error

FORS$IOS_CLOERR. An error condition was detected by
the Intel Fortran RTL 1/O system during execution of a
CLOSE statement.

29severe (29): File not found

FORS$IOS_FILNOTFOU. A file with the specified name

could not be found during an open operation.
30severe (30): Open failure

FORS$IOS_OPEFAI An error was detected by the Intel
Fortran RTL I/O system while attempting to open a file in
an OPEN, INQUIRE, or other 1/O statement. This
message is issued when the error condition is not one of
the more common conditions for which specific error
messages are provided. It can occur when an OPEN

245

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

operation was attempted for one of the following:

« Segmented file that was not on a disk or a raw
magnetic tape
« Standard I/O file that had been closed

31severe (31): Mxed file access nodes

FORS$IOS MIXFILACC. An attempt was made to use any
of the following combinations:

« Formatted and unformatted operations on the
same unit

« Aninvalid combination of access modes on a unit,
such as direct and sequential

+ Alntel Fortran RTL I/O statement on a logical unit
that was opened by a program coded in another
language

32severe (32): Invalid logical unit number

FORS$IOS_INVLOGUNI. A logical unit number greater
than 2,147,483,647 or less than zero was used in an 1/O

statement.
33severe (33): ENDFILE error

FOR$IOS_ENDFILERR. One of the following conditions
occurred:

« The file was not a sequential organization file with
variable-length records.

« The file was not opened for sequential or append
access.

« An unformatted file did not contain segmented
records.

« The Intel Fortran RTL I/O system detected an
error during execution of an ENDFILE statement.

34severe (34): Unit already open
FORS$IOS UNIALROPE. A DEFINE FILE statement

specified a logical unit that was already opened.
35severe (35): Segnented record format error

FORS$IOS_SEGRECFOR. An invalid segmented record
control data word was detected in an unformatted

246

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building

sequential file. The file was probably either created with
RECORDTYPE=" FIXED' or' VARIABLE ' in effect, or
was created by a program written in a language other

than Fortran.
3gsevere (36): Attenpt to access non-existent record

FORS$IOS_ATTACCNON. A direct-access READ or FIND
statement attempted to access beyond the end of a
relative file (or a sequential file on disk with fixed-length
records) or access a record that was previously deleted

in a relative file.
37severe (37): Inconsistent record |ength

FOR$IOS INCRECLEN. An attempt was made to open a

direct access file without specifying a record length.
3gsevere (38): Error during wite

FORS$IOS_ERRDURWRI. The Intel Fortran RTL I/O
system detected an error condition during execution of a

WRITE statement.
39severe (39): Error during read

FOR$IOS_ERRDURREA. The Intel Fortran RTL 1/O
system detected an error condition during execution of a

READ statement.
40severe (40): Recursive 1/ 0O operation

FORS$IOS_RECIO_OPE. While processing an /O
statement for a logical unit, another I/O operation on the
same logical unit was attempted, such as a function
subprogram that performs 1/O to the same logical unit
that was referenced in an expression in an I/O list or

variable format expression.
4g1severe (41): Insufficient virtual menory

FORS$IOS_INSVIRMEM. The Intel Fortran RTL attempted
to exceed its available virtual memory while dynamically
allocating space. To overcome this problem, increase the
per-process data limit by using the i ni t (C shell) or
ulimt (Bourne and Korn and bash shell) commands
before you run this program again.

To determine whether the maximum per-process data
size is already allocated, check the value of the maxdsiz
parameter in the sysconfigtab or system configuration
file. If necessary, increase its value. Changes to do not

Applications

247

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

take effect until the system has been rebooted (you do
not need to rebuild the kernel if you modify sysconfigtab).

Before you try to run this program again, wait until the

new system resources take effect.
g2severe (42): No such device

FORS$IOS_NO_SUCDEV. A pathname included an
invalid or unknown device name when an OPEN

operation was attempted.
g3severe (43): File name specification error

FORS$IOS_FILNAMSPE. A pathname or file name given
to an OPEN or INQUIRE statement was not acceptable

to the Intel Fortran RTL 1/O system.
q4severe (44): Inconsistent record type

FORS$IOS INCRECTYP. The RECORDTYPE value in an
OPEN statement did not match the record type attribute

of the existing file that was opened.
g5severe (45): Keyword value error in OPEN statenent

FORS$IOS_KEYVALERR. An improper value was
specified for an OPEN or CLOSE statement specifier

requiring a value.
g6severe (46): Inconsistent OPEN CLOSE paraneters

FORS$IOS_INCOPECLO. Specifications in an OPEN or
CLOSE statement were inconsistent. Some invalid
combinations follow:

« READONLY or ACTION=" READ ' with
STATUS=' NEW' or STATUS=' SCRATCH"

« READONLY with STATUS=' REPLACE "' ,
ACTION=" WRITE " ,
or ACTION=' READWRITE"

« ACCESS=' APPEND "' with READONLY,
ACTION=' READ' , STATUS=' NEW'"' , or
STATUS="' SCRATCH"

« DISPOSE="' SAVE"' ,' PRINT' ,or' SUBMIT"
with STATUS=' SCRATCH"

- DISPOSE="' DELETE' with READONLY

+ CLOSE statement STATUS=' DELETE ' with
OPEN statement READONLY

« ACCESS=' APPEND"' with STATUS="
REPLACE"

248

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building

+ ACCESS=' DIRECT' or' KEYED"' with
POSITION=" APPEND"' ," ASIS"' ,or’
REWIND '

4g7severe (47): Wite to READONLY file

FORS$IOS_WRIREAFIL. A write operation was attempted
to a file that was declared ACTION=" READ ' or
READONLY in the OPEN statement that is currently in

effect.
ggsevere (48): Invalid argument to Fortran Run-Tinme
Li brary

FORS$IOS_INVARGFOR. The compiler passed an invalid
or improperly coded argument to the Intel Fortran RTL.
This can occur if the compiler is newer than the RTL in

use.
51severe (51): Inconsistent file organization

FORS$IOS_INCFILORG. The file organization specified in
an OPEN statement did not match the organization of the
existing file.

53severe (53): No current record

FORS$IOS_NO_CURREC. Attempted to execute a
REWRITE statement to rewrite a record when the current
record was undefined. To define the current record,
execute a successful READ statement. You can
optionally perform an INQUIRE statement on the logical
unit after the READ statement and before the REWRITE
statement. No other operations on the logical unit may be
performed between the READ and REWRITE

statements.
p5severe (55): DELETE error

FORS$IOS_DELERR. An error condition was detected by
the Intel Fortran RTL 1/O system during execution of a

DELETE statement.
57severe (57): FIND error

FORS$IOS_FINERR. The Intel Fortran RTL 1/O system
detected an error condition during execution of a FIND
statement.

58 'info (58): Format syntax error at or near XX

FORS$IOS_FMTSYN. Check the statement containing xx,
a character substring from the format string, for a format

Applications

249

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

syntax error. For information about FORMAT statements,

see the Intel Fortran Language Reference Manual.
5osevere (59): List-directed I/O syntax error

FORS$IOS_LISIO_SYN*. The data in a list-directed input
record had an invalid format, or the type of the constant
was incompatible with the corresponding variable. The

value of the variable was unchanged.
gosevere (60): Infinite fornmat |oop

FORS$IOS INFFORLOO. The format associated with an
I/0 statement that included an 1/O list had no field

descriptors to use in transferring those values.
g1severe or info ® (61): Format/variabl e-type
nm smat ch

FOR$IOS_FORVARMIS * An attempt was made either
to read or write a real variable with an integer field
descriptor (I, L, O, Z, B), or to read or write an integer or

logical variable with a real field descriptor (D, E, or F).
g2severe (62): Syntax error in format

FORS$IOS_SYNERRFOR. A syntax error was
encountered while the RTL was processing a format

stored in an array or character variable.
g3error or info ° (63): Qutput conversion error

FORS$IOS_OUTCONERR °. During a formatted output
operation, the value of a particular number could not be
output in the specified field length without loss of
significant digits. When this situation is encountered, the
overflowed field is filled with asterisks to indicate the error
in the output record. If no ERR address has been defined
for this error, the program continues after the error
message is displayed.

g4severe (64): Input conversion error

FOR$IOS_INPCONERR °. During a formatted input
operation, an invalid character was detected in an input
field, or the input value overflowed the range
representable in the input variable. The value of the

variable was set to zero.
g5error (65): Floating invalid

FORS$IOS_FLTINV. During an arithmetic operation, the
floating-point values used in a calculation were invalid for
the type of operation requested or invalid exceptional

250

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

values. For example, when requesting a log of the
floating-point values 0.0 or a negative number. For
certain arithmetic expressions, specifying the - check

nopower option can suppress this message.
gesevere (66): Qutput statenment overflows record

FORS$IOS_OUTSTAOVE. An output statement attempted
to transfer more data than would fit in the maximum

record size.

g7severe (67): Input statement requires too nmuch
data

FORS$IOS_ INPSTAREQ. Attempted to read more data
than exists in a record with an unformatted READ
statement or with a formatted sequential READ
statement from a file opened with a PAD specifier value
of' NO' .

ggsevere (68): Variable format expression val ue
error

FOR$IOS_VFEVALERR °. The value of a variable format
expression was not within the range acceptable for its
intended use; for example, a field width was less than or
equal to zero. A value of 1 was assumed, except for a P

edit descriptor, for which a value of zero was assumed.
6O ‘error (69): Process interrupted (SI G NT)

FORS$IOS_SIGINT. The process received the signal
SIGINT. Determine source of this interrupt signal
(described in si gnal (3)).

70 ‘severe (70): Integer overflow

FORS$IOS_INTOVF. During an arithmetic operation, an
integer value exceeded byte, word, or longword range.
The result of the operation was the correct low-order part.
Consider specifying a larger integer data size (modify
source program or, for an INTEGER declaration, possibly

use the f 90 option -i nt eger _si ze nn).
71 severe (71): Integer divide by zero

FORS$IOS_INTDIV. During an integer arithmetic
operation, an attempt was made to divide by zero. The
result of the operation was set to the dividend, which is

equivalent to division by 1.
72 terror (72): Floating overflow

FOR$IOS FLTOVF. During an arithmetic operation, a

251

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

floating-point value exceeded the largest representable

value for that data type.
73 terror (73): Floating divide by zero

FORS$IOS_FLTDIV. During a floating-point arithmetic

operation, an attempt was made to divide by zero.
74 terror (74): Floating underflow

FORS$IOS_FLTUND. During an arithmetic operation, a
floating-point value became less than the smallest finite
value for that data type. Depending on the values of the -
f pe n option, the underflowed result was either set to

zero or allowed to gradually underflow.
75 terror (75): Floating point exception

FORS$IOS_SIGFPE. A floating-point exception occurred.
Core dump file created. Possible causes include:

+ Division by zero

+ Overflow

+ Invalid operation, such as subtraction of infinite
values, multiplication of zero by infinity (without
signs), division of zero by zero or infinity by infinity

» Conversion of floating-point to fixed-point format
when an overflow prevents conversion

76 terror (76): 10T trap signal

FORS$IOS_SIGIOT. Core dump file created. Examine
core dump for possible cause of this IOT signal.
77 tsevere (77): Subscript out of range

FORS$IOS_SUBRNG. An array reference was detected

outside the declared array bounds.
78 terror (78): Process killed (SI GTERV

FORS$IOS_SIGTERM. The process received the signal
SIGTERM. Determine source of this software termination
signal (described in si gnal (3)).

79 terror (79): Process quit (SIGQIT)

FORS$IOS_SIGQUIT. The process received the signal
SIGQUIT. Core dump file created. Determine source of
this quit signal (described in si gnal (3)).

o5tinfo (95): Floating-point conversion failed

FORS$IOS FLOCONFAI. The attempted unformatted
252

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

read or write of nonnative floating-point data failed
because the floating-point value:

+ Exceeded the allowable maximum value for the
equivalent native format and was set equal to
infinity (plus or minus)

« Was infinity (plus or minus) and was set to infinity
(plus or minus)

« Was invalid and was set to not a number (NaN)

Very small numbers are set to zero (0). This error could
be caused by the specified nonnative floating-point
format not matching the floating-point format found in the
specified file.

Check the following:

« Whether the correct file was specified.

+ Whether the record layout matches the format
Intel Fortran is expecting.

« The ranges for the data being used.

« Whether the correct nonnative floating-point data
format was specified.

96info (96): F_UFMIENDI AN environnent vari abl e
was i gnored: erroneous syntax

FORS$IOS_UFMTENDIAN. Syntax for specifying whether
little endian or big endian conversion is performed for a
given Fortran unit was incorrect. Even though the
program will run, the results might not be correct if you do
not change the value of F_UFMTENDIAN. For correct
syntax, see Environment Variable F_UFMTENDIAN

Method.
108severe (108): Cannot stat file

FORS$IOS_CANSTAFIL. Attempted stat operation on the
indicated file failed. Make sure correct file and unit were
specified.

120severe (120): Qperation requires seek ability

FORS$IOS_OPEREQSEE. Attempted an operation on a
file that requires the ability to perform seek operations on
that file. Make sure the correct unit, directory path, and
file were specified.

253

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

138 'severe (138): Array index out of bounds (SIGLL)

FORS$IOS_BRK_RANGE. Break exception generated a
SIGTRAP signal (described in si gnal (3)). Core dump file
created.

The cause is an array subscript that is outside the
dimensioned boundaries of that array.

Either recompile with the - check bounds option (perhaps
with the decf ort _dunp_f | ag environment variable set) or
examine the core dump file to determine the source code

in error.
139 tsevere (139): Array index out of bounds for index
nn (Sl & LL)

FORS$IOS_BRK_RANGE?2. Break exception generated a
SIGTRAP signal (described in si gnal (3)). Core dump
file created.

The cause is an array subscript that is outside the
dimensioned boundaries of the array index n.

Either recompile with the - check bounds option (perhaps
with the decf ort _dunp_f | ag environment variable set) or
examine the core dump file to determine the source code

in error.
140 ‘severe (140): Floating inexact

FORS$IOS_FLTINE. A floating-point arithmetic or
conversion operation gave a result that differs from the
mathematically exact result. This trap is reported if the
rounded result of an IEEE operation is not exact.

144 tsevere (144): reserved operand

FORS$IOS ROPRAND. The Intel Fortran RTL
encountered a reserved operand. Please report the

problem to Intel..
145 tsevere (145): Assertion error

FORS$IOS ASSERTERR. The Intel Fortran RTL
encountered an assertion error. Please report the

problem to Intel..
146 tsevere (146): Null pointer error

FOR$IOS NULPTRERR. Attempted to use a pointer that

254

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

does not contain an address. Modify the source program,

recompile, and relink.
147 ‘severe (147): stack overflow

FORS$IOS_STKOVF. The Intel Fortran RTL encountered

a stack overflow while executing your program.
148 ‘severe (148): String length error

FORS$IOS_STRLENERR. During a string operation, an
integer value appears in a context where the value of the
integer is outside the permissible string length range.

Either recompile with the - check bounds option (perhaps
with the decf ort _dunp_f | ag environment variable set) or
examine the cor e file to determine the source code

causing the error.
149 tsevere (149): Substring error

FORS$IOS_SUBSTRERR. An array subscript is outside
the dimensioned boundaries of an array.

Either recompile with the - check bounds option (perhaps
with the decf ort _dunp_f | ag environment variable set) or
examine the cor e file to determine the source code

causing the error.
150 *severe (150): Range error

FORS$IOS_RANGEERR. An integer value appears in a
context where the value of the integer is outside the

permissible range.

1571 ‘severe (151): Allocatable array is already
al | ocat ed

FORS$IOS_INVREALLOC. An allocatable array must not
already be allocated when you attempt to allocate it. You
must deallocate the array before it can again be

allocated.

152 ‘severe (152): Unresolved contention for Intel
Fortran RTL gl obal resource

FORS$IOS_RESACQFAI. Failed to acquire a Intel Fortran
RTL global resource for a reentrant routine.

For a multithreaded program, the requested global
resource is held by a different thread in your program.

For a program using asynchronous handlers, the

255

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

requested global resource is held by the calling part of
the program (such as main program) and your
asynchronous handler attempted to acquire the same

global resource.

153 'severe (153): Allocatable array or pointer is not
al |l ocat ed

FORS$IOS_INVDEALLOC. A Fortran-90 allocatable array
or pointer must already be allocated when you attempt to
deallocate it. You must allocate the array or pointer

before it can again be deallocated.

173 'severe (173): A pointer passed to DEALLOCATE
points to an array that cannot be deall ocated

FORS$IOS_INVDEALLOC?2. A pointer that was passed to
DEALLOCATE pointed to an explicit array, an array slice,
or some other type of memory that could not be
deallocated in a DEALLOCATE statement. Only whole
arrays previous allocated with an ALLOCATE statement
can be validly passed to DEALLOCATE.

174 'severe (174): SIGSEGY, nessage-text

FORS$IOS_SIGSEGV. One of two possible messages
occurs for this error number:

e severe (174): SIGSEGV, segnentation fault
occurred

This message indicates that the program
attempted an invalid memory reference. Check the
program for possible errors.

e severe (174): SIGSEGV, possible program
stack overfl ow occurred

The following explanatory text also appears:
Program requi rements exceed current
stacksi ze resource limt.

175 ‘severe (175): DATE argunent to DATE _AND_TIME is
too short (LEN=n), required LEN=8

FORS$IOS_SHORTDATEARG. The number of characters
associated with the DATE argument to the
DATE_AND_TIME intrinsic was shorter than the required
length. You must increase the number of characters
passed in for this argument to be at least 8 characters in
length. Verify that the TIME and ZONE arguments also
meet their minimum lengths.

256

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

176 severe (176): TIME argunment to DATE AND_TIME is
too short (LEN=n), required LEN=10

FORS$IOS_SHORTTIMEARG. The number of characters
associated with the TIME argument to the
DATE_AND_TIME intrinsic was shorter than the required
length. You must increase the number of characters
passed in for this argument to be at least 10 characters in
length. Verify that the DATE and ZONE arguments also

meet their minimum lengths.

177 ‘severe(177): ZONE argument to DATE_AND TIME is too
short (LEN=n), required LEN=5

FORS$IOS_SHORTZONEARG. The number of characters
associated with the ZONE argument to the
DATE_AND_TIME intrinsic was shorter than the required
length. You must increase the number of characters
passed in for this argument to be at least 5 characters in
length. Verify that the DATE and TIME arguments also

meet their minimum lengths.
178 ‘severe(178): Divide by zero

FORS$IOS_DIV. A floating-point or integer divide-by-zero
exception occurred.

179 “severe(179): Cannot allocate array---overflow on
array size cal cul ation

FORS$IOS_ARRSIZEOVF. An attempt to dynamically
allocate storage for an array failed because the required

storage size exceeds addressable memory.

o5gsevere (256): Unformatted I/Oto unit open for
formatted transfers

FORS$IOS_UNFIO_FMT. Attempted unformatted 1/0O to a
unit where the OPEN statement (FORM specifier)
indicated the file was formatted. Check that the correct
unit (file) was specified.

If the FORM specifier was not present in the OPEN
statement and the file contains unformatted data, specify
FORM="' UNFORMATTED ' in the OPEN statement.
Otherwise, if appropriate, use formatted 1/O (such as list-

directed or namelist 1/O).

og7severe (257): Formatted 1/Oto unit open for
unformatted transfers

FORS$IOS_FMTIO_UNF. Attempted formatted 1/0 (such
as list-directed or namelist I/O) to a unit where the OPEN

257

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

statement indicated the file was unformatted (FORM
specifier). Check that the correct unit (file) was specified.

If the FORM specifier was not present in the OPEN
statement and the file contains formatted data, specify
FORM=' FORMATTED "' in the OPEN statement.

Otherwise, if appropriate, use unformatted 1/O.

264severe (264): operation requires file to be on
di sk or tape

FORS$IOS_OPERREQDIS. Attempted to use a
BACKSPACE statement on such devices as a terminal or
pipe.

2e5severe (265): operation requires sequential file
organi zati on and access

FORS$IOS OPEREQSEQ. Attempted to use a
BACKSPACE statement on a file whose organization
was not sequential or whose access was not sequential.
A BACKSPACE statement can only be used for

sequential files opened for sequential access.
266 *error (266): Fortran abort routine called

FOR$IOS_PROABOUSE. The program called abort to

terminate the program.
268 tsevere (268): End of record during read

FOR$IOS_ENDRECDUR. An end-of-record condition
was encountered during execution of a nonadvancing 1/0
READ statement that did not specify the EOR branch
specifier.

297 'info (297): nn floating invalid traps

FORS$IOS_FLOINVEXC. The total number of floating-
point invalid data traps encountered during program
execution was nn. This message appears at program
completion.

298 'info (298): nnfloating overflow traps

FORS$IOS_FLOOVFEXC. The total number of floating-
point overflow traps encountered during program
execution was nn. This message appears at program
completion.

299 'info (299): nnfloating divide-by-zero traps

FORS$IOS_FLODIVOEXC. The total number of floating-
point divide-by-zero traps encountered during program

258

Intel® Fortran Compiler for Linux* Systems User's Guide, Volume I: Building
Applications

execution was nn. This message appears at program
completion.
300 'info (300): nnfloating underflow traps

FORS$IOS_FLOUNDEXC. The total number of floating-
point underflow traps encountered during program
execution was nn. This message appears at program
completion.

Footnotes:

1 Identifies errors not returned by IOSTAT.

2 The ERR transfer is taken after completion of the 1/0 statement for error numbers 59,
61, 63, 64, and 68. The resulting file status and record position are the same as if no error
had occurred. However, other I/O errors take the ERR transfer as soon asthe error is

detected, so file status and record position are undefined.

3 For errors 61 and 63, the severity depends on the - check options used during
compilation.

4 |dentifies errors that can be returned by STAT in an ALLOCATE statement.

259

Index

IDECS prefiX ..o 36
IMSS prefiX....ieee e, 36
*DECS prefiX v, 36
*DIRS prefiX cvvvvvevveeeeeiiiiciiiieeeen, 36
/
binfileS......ccooveviiiiiiiiiieeen, 237, 238
/opt/intel_fc_80/include/fordef.for file
.. 119
__ELF__ preprocessor symbol..... 25

__gnu_linux__ preprocessor symbol

.. 25
__i386 preprocessor symbol......... 25
__1386__ preprocessor symbol..... 25
__iab4 preprocessor symbol......... 25
__iab4__ preprocessor symbol..... 25

__INTEL_COMPILER preprocessor
symbol...........coooo 25

__linux preprocessor symbol 25
__linux__ preprocessor symbol 25

__unix preprocessor symbol.......... 25

_FTN_ALLOC() library routine 32

_OPENMP preprocessor symbol ..25

1
-1 compiler option.............ccceveeeenns 38
-132 compiler option...........ccccueeee 60
6
-66 compiler option...........cccccuneenee 60
7
-72 compiler option...........cccccuneenee 60
8
-80 compiler option..............ccceeeeee 60
A
absolute pathname........................ 10

ACCEPT statement....138, 139, 147,
158

accessing data

in mixed-language programming

... 191
accessing files..........cccceeeiiiinnnnns 147
ACTION specifier

in OPEN statement.................. 160

address

261

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building

Applications
of a common block, passing.... 194
adjusting calling conventions
mixed-language programming. 182
adjusting naming conventions
mixed-language programming
OVEIVIEW ..oooeviiiiiiiiiiiiiiieee, 186

ADVANCE specifier

in READ statement.................. 161

in WRITE statement................. 161
advancing l/O.........cccccceeeeeeeeee. 161
ALIAS property......ccccoceuunn... 183, 189
-align compiler option.................... 47
alignment

compiler options for................... a7

allocatable arrays

handling...........cccovvvvviccenenee, 202
allocating
common blocks 32

alternative tool locations

SPecCifyingccoeevevviiiiiieei, 23
-altparam compiler option 60
-ansi_alias compiler option 64
array assignmentcccceeeeeeeeeennn. 99

262

array declarations.................cc.... 205
array descriptor

handling ..., 205
array descriptor format

description ofcccoevviiiiiiennnns 205

array pointers

handlingccccoeeiiiiiiiiis 202
array SeCtion..........cccccuuuenninnnnnnnnnns 99
Array SiZ€....oooeeeeeveeeeiiiiiie e e e, 238
array variable ... 99
arrays

C 205

Fortran..........ceeiiiviiniiienne, 205

handlingccccooeiiiiis 205
as assembler.......cooceviiiiiiiiiinnnns 6,7
assemblers.......cccoociiiiiiiiiie 7
assigning files.........cccccceeeeeeeneeen. 147
assignment to arrays..................... 99

-assume [no]bscc compiler option.38

-assume buffered_io compiler option

-assume byterecl compiler option..47

-assume cc_omp compiler option..64

-assume dummy_aliases compiler
(0] 1[0] o HS I 47

-assume minus0O compiler option .. 55
-assume none compiler option...... 64

-assume protect_constants compiler
(0] 1[0] o IS 47

-assume underscore compiler option
.. 54

ATTRIBUTES properties

and mixed-language programming
... 183

effect on character strings....... 209

ATTRIBUTES properties..... 189, 202

-auto compiler option 47
-auto_ilp32 compiler option........... 71
-auto_scalar compiler option......... 47
-automatic compiler option............ a7
automatic vectorizer...........cccccevennne 5
-ax compiler option........cccoeeeeeeenn.. 71
B

BACKSPACE statement..... 138, 158

bash_profilecccovvvieenn 14
bash_profile file...........ccccceeeeeen 14
big endian storageccuuueen. 123
BIG_ENDIAN keyword................ 123

binary conversions 240
breakpoints

7= 1] o [91
breakpointS..........coovviiiiiiiiiin, 91

building applications
OVEIVIEW ..ot e e e e 12

by-reference argument passing...192

by-value argument passing 192
C

-c output files compiler option........ 82
C propertyccoeeeeeviveeennnnnns 183, 189
-C run-time compiler option............ 86

C source files
compilingcoovvvviiiiiiiieeeeeeeees 16
C structures

using in mixed-language
programmingccceeeeeeennnn. 194

C variables

using in mixed-language
programmingccceeeeeeennne. 194

C/C++ naming conventions......... 187
C/Fortran mixed-language programs
calling C procedures................ 216

(o70] 0] o]1 1o o [213

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building

Applications
NKING v 213
naming conventions 216
OVEIVIEW ... 213
passing arguments.................. 216

calling C procedures

from a Fortran program 216
calling convention

description ofccceeeiiieeeenn. 179
calling conventions

and ATTRIBUTES properties .. 183

and mixed-language programming

... 183
calling subprograms from main
Program........ccoeeevneveiineiennneeenn. 180
carriage control
-ccdefault compiler option 64
-CB compiler option 86
-ccdefault compiler option.............. 64
CDECS prefiX.....ooveveeiiciieeeee 36
CDIRS prefiX ..o, 36
cell numberccoocoiis 142
character array.........cccceeeeeeeeeeennn. 143
character array element.............. 143
character array section 143

264

character data representation121
character data types
returningooooeevvveeviviiieeeeeee, 209

character strings

handling ..., 209
character substring...................... 143
character variable........................ 143
-check ompiler option 86
checking

FUN-tIME ... 86
CLOSE statement 138, 157

closing a file

See CLOSE statement 157
code generation options................ 37
codecov fileccoovvviiviinnnnnn. 237, 238
Code-coverage tool............. 237, 238

command-line output

redirecting.........ccevvvvvviiieeeeeeenn, 27
commands
debugger
expressions iN..........cceeeeeene 106
SUMMAry Ofovevveveveeeiiieeene. 93
debuggercoo 91

common block variable 99
common blocks
allocatingocveeeieiiieeieeeeenn, 32
passing the address of 194

using in mixed-language
programming..........cccceeeeee.... 194

common external data structures 194

-common_args compiler option..... 47
compatibility
with Microsoft Fortran
PowerStation*.............cccc..... 174
compatibility options...................... 38

compatibility with previous versions
.. 240

compilation diagnostics options 42
compilation phases...........ccccevveeenne 6

compilation process

controllingccoveeeeiiieeieeeeenn, 13
compiler

components Of........cccoeeveeeiiiiiennns 2

default behavior of 8

INVOKING 14
(070 0] o 11T 1
compiler directivesccceeeeeeennn.. 36
compiler limitsccoooeeeeeneeen. 238

Index

compiler option convert method ..135

compiler options

compatibilityccccoeeeiieiiinnnnn, 38
compilation diagnostics.............. 42
data........ccooooiiiii 47
details ... 35
external procedures................... 54
getting help........coveeiiiiiinnnns 35
language........ccccevvveeeiiiiiiinee e, 60
libraries ..., 62
miscellaneous.............cccvveeeeeenn. 64
optimizationccceeeeveeeiiiiennnnns 71
output fileseueeeiiiiiiiiiis 82
OVEIVIEW ..ooviiiiiiiieieieeeeeeeeeeeee 34
rUN-tiMe ..o 86
Styles Of .oooeevviiicee 35
compiler optionsccceeeeeeeeeiiennnns 55

compile-time environment variables

... 234
compiling
C/Fortran mixed-language
Programs........ccceeeeeevnnevennnnens 213

COMPLEX data representation...118

complex data types

265

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building

Applications
handling...........cccovvvvvviccinnee, 200
complex variable...........cccceeeeeeennn. 99

COMPLEX(16) data representation

.. 119
COMPLEX(4) data representation
.. 118
COMPLEX(8) data representation
.. 118
COMPLEX(KIND=16) data
representationcccceeees 119
COMPLEX(KIND=4) data
representationcccceeees 118
COMPLEX(KIND=8) data
representationcccceeees 118

COMPLEX*16 data representation
.. 118

COMPLEX*32 data representation
.. 119

COMPLEX*8 data representation118

-complex_limited_range compiler

(o] 01110] o H T URPTITI 71
components of compiler.................. 2
configuration files................ccc.eee. 21
controlling

compilation process................... 13
conventions

documentation............coeeeeeeeeeennns 3
conversions

266

hexadecimal-binary-octal-decimal

... 240
-convert compiler option................ 38
converting unformatted data

OVEIVIEW ..o 123
CRAY keyword..........ccccceeeeeeeennn. 123
Cray*-style pointer................. 99, 203
creating

executable program.................. 27

shared libraries.......................... 30
CriXi.ofile ..o, 228
CriXn.ofile.....ovvveiiiis 228
-cxxlib-icc compiler option 62
D
-d_lines compiler option 60
data

unaligned

locating.......coovvvvvviiiiiieeeeeee, 108
data alignment

compiler options for a7

data format

specifying

compiler option -convert method
... 135

environment variable COMPLEX*32....ccovvvvvviieieeeen, 119
F UFMTENDIAN method. 130
COMPLEX*8.....cccovvviieieeeee 118
environment variable
FORT_CONVERT.ext method DOUBLE COMPLEX 118
... 129
DOUBLE PRECISION 116
environment variable
FORT_CONVERT _ext EXTENDED PRECISION 117
methodccccceeeeeieeenn, 129
Hollerithcooiiiiii, 122
environment variable
FORT_CONVERTN method 11 C=To =] PR 109
... 128
logicalcoovvveeieiiiiecee e 114
OPEN statement CONVERT
methodcccceeeeeeeeeenn. 133 native IEEE* floating-point
representation..................... 115
OPTIONS statement method134
OVEIVIEW ...ceevvveeviiiiieee e e e e e eeeeans 109
sSpecifyingcoovvvviiiiiiieeeee 127
REAL ..o, 116
data optionsceeevviiiiiieeeeenn. a7
REAL(KIND=16)c.vvvvvunnn.. 117
data prefetchingcccooeeveiiiiiinnnnn. 5
REAL(KIND=4)c.ccooveveenn. 116
data representation
REAL(KIND=8)ccoveverrenen. 116
charactercoovveeiieiinnnnnnnn. 121
data storagecccceeennnnnnnnnnnns 238
COMPLEX....ccciiiiieiiieeeeen 118
data type
COMPLEX(16) ..ccvvvvvvvnieeeeennn. 119
converting unformatted files.....123
COMPLEX(4) «ccovvvvvicieeeeee 118
data types
COMPLEX(8) ..ccevvvvvvvriieeeeennn, 118
character.........ccccoceeeeeiiieeiinnnnn, 209
COMPLEX(KIND=16).............. 119
debugger equivalents 99
COMPLEX(KIND=4)................ 118
Fortranand Ccccccooeeee. 198
COMPLEX(KIND=8)................ 118
handling in mixed-language
COMPLEX*16ccvvvviiiiiieeen, 118 programming

267

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building

Applications
OVEIVIEW ...ooeiiiiiiiiiiieeeeeas 198

INEINSIC .. 110
data typescoeeeevvvviiiiiiiiee e, 99
date and time routines 230
-DD compiler optionc.ccee..... 60
debugger

See debuggingccccciiinnnns 88
debugging

commands

summary ofcccceeeiiiiiiinnnn, 93

COMMANGS......ovviiiieeeiiiiiiiieeeen 91

displaying variables................... 99

EXPresSIoONSccevvvvvuniiiieeeann 106

getting started with 89

locating unaligned data 108

mixed-language programs....... 107

(0] 011 0] o 1< 7 89

OVEIVIEW ... 88

preparing program for................ 90

program that generates a signal
... 108

SQUARES example program.... 95

decfort_dump_flag environment
variable.............cccooooe 234

268

decimal conversions................... 240
DECLARE compiler directive 36
DECORATE propertyccccoeeeen. 183
default
file namesccccc 149
pathnames..........cccccccceeiiinennnn. 149
default behavior of compiler 8

DEFAULTFILE specifier

in OPEN statement.......... 147, 149
DEFINE compiler directive............. 36
DEFINE FILE statement.............. 138
DELETE statement.............. 138, 158
denormalized numbers................ 119
derived-type variable..................... 99
differences between versions......240

direct access

forrecordscooooveeiiiiiiiiin 158
AIreCliVES ..o 36
disclaimerccooovveeeiieeeeieen, 1

displaying variables

in debuggingcccvvvvvviiiinnennenn. 99
documentation
additional ..o, 3

documentation conventions 3

DOUBLE COMPLEX data
representationceeeee... 118

DOUBLE PRECISION data

representationcccceeees 116
-double_size compiler option 47
-dps compiler option...................... 60
-dryrun compiler option 64

dynamic common block
allocating memory to 32
guidelines for using 32

-dynamic-linker compiler option 64

-dyncom compiler option......... 32,47
E

-e90 compiler option 42
-e95 compiler option 42
ebp register........cccovvvviiiiiiiei e, 71
efcfile . 238
efc.cfgfile......ooooiiiiiiii 238
efcbinfile.........ccoooiiiiiiiiiiiie, 238
END branch specifier.................. 222
ENDFILE statement............ 138, 158

environment variable
F _UFMTENDIAN method........ 130

Index

environment variable
FORT_CONVERT.ext method.129

environment variable
FORT_CONVERT _ext method 129

environment variable
FORT_CONVERTnN nethod 128

environment variables
compile-timecccoeeveeeeveeennns 234

running shell script to set up....... 14

FUN-tiMe ... 234
7= 1] o [N 13
VIEWING..cceviiiiiiieeee e 13
EOR branch specifier 222
ERR branch specifier 222

error handling

OVEIVIEW ..o 216
FUN-tIME oo, 222
error handlingcccceeeeeeeeenee, 217

error handling capabilities
OPEN statement specifiers for 152
error handling routines 230

error messages

FUN-tiMe ..o 242
€rror ProCcessSiNgcceeeeeeeeeeennn. 217
-error_limit compiler option............ 42

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building

Applications
ERRSNS subroutine.................... 222
example program

SQUARES.......ccco e, 95
exception handler

for Run-Time Library (RTL)

overndingeeeeeveeeeneeennnns 226
EXCEPTION_CONTINUE_SEARCH
.. 234
exceptional numbers
Identifyingcccccvvvvvviniinnnnnne. 119

exchanging data

in mixed-language programming
... 191

executable program

creating, running, and cebugging

... 27
export commandcccceeeeeeeennn. 13
expressions

in debugger commands........... 106

-extend_source compiler option.... 60

EXTENDED PRECISION data

representationc.ccceeeeennn. 117
extensions

filename.......cccccoeiiiiiiiiiii, 9
external procedures options.......... 54

270

F
F _UFMTENDIAN environment

variablecccocoe 130, 234
F_UFMTENDIAN method............ 130
-f66 compiler option.............cccueeee 60
-f77rtl compiler option.................... 38
f90_dyncom run-time library routine

... 32
-falias compiler option 71
-fast compiler option...................... 71
-fcode-asm comipiler option 82
FDX keyword...........ccoevveeeevinnnnnnn. 123
-ffnalias compiler option 71
FGX keywordccovvvvvviveeennnn. 123
file

unlocking ..., 138

file access

OPEN statement specifiers for 152
file characteristics

OPEN statement specifiers for 152

OVEIVIEW ..o e e e e 141
file close action

OPEN statement specifier for ..152

file information

OPEN statement specifiers for 152
file locations

coding in an OPEN statement . 152
file name

INQUIry by ... 155

file names

default
rules for applying 149
file organization................... 142, 158

file position
OPEN statement specifiers for 152
file processing

OPEN statement specifiers for 152

file sharingccooeeiiiiiiie 160
file specification...............cccccueeee 149
file specifications.............cccevvvveens 10

FILE specifier

in OPEN statement.......... 147, 149
filename extensionscccceeueee. 9
files

ACCESSING oooeveeeeeeeeeeeeeeeee s 147

asSIgNING ...ooeeeeeeeeeeeeeeeeeens 147

internalcccocvvvvvvvvnvinniinnnne. 143

Index

multiple
compiling and linking.............. 16
OPENING....ccoevviiiiiiiie e eeeeeeeains 152
OULPUL. ..o 10
OVEIVIEW ..oooiiiiiiiiiiiiiiieeeeeeeee 141
preconnected............ccccuvnnnnnnns 147
record overhead....................... 146
record type.......ccvvvvvvvveciinneeeenn, 144
SCratCh ..o, 143
teMporaryccoevevveinieiiieeeies 11
FIND statement................... 138, 158
FIORT_CONVERTnN environment
variableccoos 128
-fixed compiler option 60

fixed format
compiler option for..................... 60
fixed-form fileS.....covveveviiiiiei, 9

FIXEDFORMLINESIZE compiler

directive ... 36
fixed-length record type....... 144, 146
fixed-length records..................... 170
floating-point options 55
floating-point representations...... 119
-fltconsistency compiler option 55

271

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building

Applications
-fnsplit compiler option.................. 71

FORS$IOS_ARRSIZEOVF error
MESSAJE ... e eeeereeeererneeeeeenenn 242

FORS$IOS_ASSERTERR error
MESSAJE ... e eeeereeeererneeeeeenenn 242

FORS$IOS_ATTACCNON error
MESSAJE.....cceeereeeererreeeeennenn 242

FORS$IOS_BACERR error message

.. 242
FORS$IOS BRK_RANGE error
MESSAJE ... ccevneeerieeeiiieeeeieeenn 242
FORS$IOS _BRK_RANGE2 error
MESSAJEcevvnieerieaeiieeenieeennn 242
FORS$IOS _BUG_CHECK error
MESSAJEcevvnierrneaeiieeenieeennn 242
FOR$IOS CANSTAFIL error
MESSAJE ... ccevvneeerieeeiieeenieeennn 242
FOR$IOS CAOVEEXI error
MESSAJE ... ivvvneeeriiereiiereineeennn 242

FORS$IOS_CLOERR error message
.. 242

FORS$IOS_DELERR error message
.. 242

FORS$IOS_DIV error message 242

FOR$IOS DUPFILSPE error
MESSAQE ... i ievveeerieeeiiiereiineeennn 242

FOR$IOS _ENDDURREA error
MESSAQE ...uievveeeiiieierieeeiieeenns 242

FOR$IOS_ENDFILERR error
MESSAQE ... i ievveeerieeeiiiereiineeennn 242

272

FORS$IOS_ENDRECDUR error
MESSAJE ... eevereiieeeeeniee e eennenn 242

FOR$IOS ERRDURREA error
MESSAJE ... eeverrieeeeeenieeeeennnnn 242

FOR$IOS ERRDURWRI error
MESSAJE ... ceevieeeieeeieeei e 242

FOR$IOS FILNAMSPE error
MESSAJE ... ceevieeeeieeei e 242

FOR$IOS FILNOTFOU error
MESSAJE ... ceevieeereeeieeei e 242

FORS$IOS_FINERR error message

... 242
FOR$IOS FLOCONFAI error
MESSAJE ...vevvveveieeeeieeeeineeenn 242
FOR$IOS_ FLODIVOEXC error
MESSATE ..uvvvvieveiieeiiieeeerneeenn 242
FOR$IOS FLOINVEXC error
MESSAYE ..uvvvvieeeiieeeiieeeeineeenn 242
FORS$IOS_FLOOVFEXC error
MESSAJE ...vvvvieeeineveiieeeeineeennn 242
FORS$IOS_FLOUNDEXC error
MESSAJE ... vevieeeieeeeieeeerneeeenn 242

FORS$IOS_FLTDIV error message

FORS$IOS_FLTUND error message
.. 242

FORS$IOS_FMTIO_UNF error
MESSAJE.....eceevreieeererreeeeeenenn 242

FORS$IOS_FMTSYN error message

.. 242
FOR$IOS FORVARMIS error
MESSAJEcevvnieirnraeiiieeenieaennn 242
FORS$IOS INCFILORG error
MESSAJEcevvnieirnraeiiieeenieaennn 242
FOR$IOS INCOPECLO error
MESSAJEcevvierrieeeriieeeeieeennn 242
FORS$IOS_INCRECLEN error
MESSAJE ... ccevvneeirieeenieeenieeennn 242
FORS$IOS_INCRECTYP error
MESSAQE ... ievveeeiieeerieeeineeenns 242
FOR$IOS INFFORLOO error
MESSAJE ... ievvieeiiieieineeeineeennn 242
FORS$IOS_INPCONERR error
MESSAQE ... ieveeeeriieeeiiereineeenns 242
FORS$IOS_INPRECTOO error
MESSAQE ... ivvveeeiiieeeiieeeineeenns 242
FORS$IOS_INPSTAREQ error
MESSAJE ... eevvneeerieeeiiieeeineeenn 242
FORS$IOS_INSVIRMEM error
MESSAJE ... eeveneeerieeeiieeeiineeenn 242

FORS$IOS_INTDIV error message
.. 242

FORS$IOS_INTOVF error message
.. 242

Index

FORS$IOS_INVARGFOR error
MESSAJE ... eeverrieeeeeeriie e eennenn 242

FORS$IOS_INVDEALLOC error
MESSAJEeeeeervieeeeeeniee e eennenn 242

FORS$IOS INVDEALLOC?2 error
MESSAJE ... eveerrie e eennenn 242

FOR$IOS INVLOGUNI error
MESSAJE ... ceevieeeiieeeiieeei e 242

FORS$IOS INVREALLOC error
MESSAJE ... cevvieeerieeeieeei e 242

FORS$IOS_INVREFVAR error
MESSAJE ... ceevieeeiieeeieeeieeeenn 242

FORS$IOS_KEYVALERR error
MESSAJE ... ceevieeerieeeiee e 242

FORS$IOS_LISIO_SYN error
MESSAJE ...vevvvieveiieeeiieeeeiineeenn 242

FOR$IOS_MIXFILACC error
MESSAYE ..uvvvvieveiieeeiieeeeineeennn 242

FOR$IOS NO_CURREC error
MESSAJE ...vvvvieieieeeeiieeeeineeenn 242

FOR$IOS_NO_SUCDEV error
MESSAJE ...vivvvieveiineeeiieeeeineeene 242

FOR$IOS_NOTFORSPE error
MESSAJE ... evvveeeiieeeeie e eieeeeenn 242

FORS$IOS_NULPTRERR error
MESSAJE ... eveveeeiieeeeiee e eeenn 242

FOR$IOS_OPEDEFREQ error
MESSAJE ... eveveeeeieeeeiee e eeenn 242

FORS$IOS_OPEFAI error message

273

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building

Applications

FORS$IOS_OPEREQSEE error
MESSAJE.....eeveereeeererreeeeeennnn 242

FORS$IOS_OPEREQSEQ error
MESSAJE.....cceeereeeerenneeeeennenn 242

FORS$IOS_OPERREQDIS error
MESSAJE ... ccevneeerieeeiiieeeeieeenn 242

FOR$IOS OUTCONERR error
MESSAJE ... ccevneeerieeeiiieeeeieeenn 242

FOR$IOS OUTSTAOVE error
MESSAJE ... ccevvneeerireeiiieeenieeennn 242

FOR$IOS PERACCEFIL error
MESSAJEcevvnieeriraeiiieeeeieeennn 242

FOR$IOS PROABOUSE error
MESSAJE ... ieveieeriieeeinereineeenns 242

FOR$IOS_RANGEERR error
MESSAQE ...uieveieeiiieeerneeeineeenns 242

FORS$IOS_RECIO_OPE error
MESSAQE ... ieveeieiiieeernereineeenes 242

FOR$IOS_RECNUMOUT error
MESSAQE ... i ieveeeeiiieeiiereineeenes 242

FORS$IOS_RESACQFAI error
MESSAJE ... eeveneeerieeeiiieeeiineeenn 242

FORS$IOS_REWERR error message

.. 242
FORS$IOS_ROPRAND error

MESSAJE ... eeveneeerieeeiiieeeiineeenn 242
FOR$IOS_SEGRECFOR error

MESSAJE ... ieveneeerieeeineeeiineeenn 242

FORS$IOS_SHORTDATEARG error
MESSAJE.....ceeeereieeererneeeeeennnn 242

274

FORS$IOS_SHORTTIMEARG error
MESSAJE ... eevereiieeeeeniee e eennenn 242

FOR$IOS SHORTZONEARG error
MESSAJE ... eeverrieeeeeenieeeeennnnn 242

FORS$IOS_SIGFPE error message

... 242
FORS$IOS_SIGINT error message
... 242
FORS$IOS_SIGIOT error message
... 242
FORS$IOS_SIGQUIT error message
... 242
FORS$IOS_SIGSEGYV error message
... 242
FORS$IOS_SIGTERM error message
... 242
FOR$IOS_ STKOVF error message
... 242
FOR$IOS_STRLENERR error
MESSAJE ...vvvvieeeineveiieeeeineeennn 242

FORS$IOS_SUBRNG error message

... 242
FOR$IOS_SUBSTRERR error
MESSAJE ... evevneeeieeeeieeeereeeeenn 242
FOR$IOS_SYNERRFOR error
MESSAJE ... vevieeeieeeeieeeerneeeenn 242
FORS$IOS_SYNERRNAM error
MESSAJE ... veveeeiieeeeieeeereeeenn 242
FORS$IOS_TOOMANREC error
MESSAJEvvvvrvieeeeeenee e 242

FOR$IOS_TOOMANVAL error
MESSAJE.....eeveereieeererneeeeeenenn 242

FORS$IOS_UFMTENDIAN error
MESSAJE.....eceevreieeererreeeeeenenn 242

FORS$IOS_UNFIO_FMT error
MESSAJE.....ecvevreeeererneeeeennnnn 242

FOR$IOS UNIALROPE error
MESSAJEcevvnieirnraeiiieeenieaennn 242

FOR$IOS _UNINOTCON error
MESSAJEcevvnieirnraeiiieeenieaennn 242

FOR$IOS WRIREAFIL error
MESSAJEcevvierrieeeriieeeeieeennn 242

FOR_ACCEPT environment variable

FOR_DIAGNOSTIC _LOG_FILE
environment variable............... 234

FOR_DISABLE_DIAGNOSTIC_DIS
PLAY environment variable..... 234

FOR_DISABLE_STACK TRACE
environment variable............... 234

FOR_IGNORE_EXCEPTIONS
environment variable............... 234

FOR_K_FP_NEG_DENORM symbol
.. 119

FOR_K_FP_NEG_INF symbol.... 119

FOR_K_FP_NEG_NORM symbol
.. 119

FOR_K_FP_NEG_ZERO symbol 119

FOR_K_FP_POS_DENORM symbol
.. 119

Index

FOR_K_FP_POS_INF symbol....119

FOR_K_FP_POS_NORM symbol

FOR_K_FP_POS_ZERO symbol 119
FOR_K_FP_QNAN symbol......... 119
FOR_K_FP_SNAN symbol 119
for_main.ofile.......ccccceeeviiiiiinnn, 228

FOR_NOERROR_DIALOGS
environment variable 234

FOR_PRINT environment variable

... 234
FOR_READ environment variable

... 234
FOR_TYPE environment variable

... 234
fordef.for filecccceeviiiiinnnnnnn. 119
FORM specifier

in OPEN statement.......... 139, 147
format

of record types........ccccceeeeeeennnn. 170
FORMAT statement

and preprocessingcccuveeuunnns 7

formatted direct files

and Microsoft Fortran
PowerSation* compatibility...174

formatted I/O statement............... 139

275

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building

Applications
formatted sequential files

and Microsoft Fortran
PowerSation* compatibility .. 174

FORT_BUFFERED environment
variable............ccccoeeeiiiiin, 234

FORT_CONVERT.ext environment
variable.........coooovviinneennn. 129, 234

FORT_CONVERT.ext method.... 129

FORT_CONVERT _ext environment
variable.........cooooeviivneennn. 129, 234

FORT_CONVERT_ext method... 129

FORT_CONVERTnN environment
variable............ccccoeeiiiiiin 234

FORT_CONVERTN method........ 128

fortcom ..o 6
fortcomfileccccovvinnnn 237, 238
Fortran

OPEratorsSccvvvvveieiiieiiineeieeen 106
Fortran 95/90 pointer 99

Fortran 1/O
OVEIVIEW ..o, 136

Fortran PowerStation* compatibility
.. 174

Fortran/C mixed-language programs
OVEVIEW ... 213

FORTRAN-66 interpretations........ 60

276

-fp compiler option.............cccoeeees 71
FP_CLASS intrinsic function 119
-fp_port compiler option................. 55

FPATH environment variable 20, 234

-fpconstant compiler option 55
-fpe compiler option....................... 55
-fpic compiler option 30, 64
[16] ¢ I 6,7
fpp file oo 237, 238
-fpscomp compiler option 38
-fpstkchk compiler option............... 55
-fr32 compiler option...................... 55
-free compiler option...................... 60

free format
compiler option for..................... 60

FREEFORM compiler directive36

free-formfilesccooeiiiiiiiiiiis 9
-fsource-asm compiler option........ 82
-ftz compiler option................o.o.. 55

-fverbose-asm compiler option...... 82
-fvisibility compiler option 64

-fvisibility-keyword compiler option 64

G
-g compiler option 64, 89
getting help on compiler options ... 35
getting started
debuggingcccoceeeiiiiieeeee 89
OVEIVIEW ..ot 4
global variables

using in mixed-language

programming..........ccceeeeeenne. 194

-gp compiler optioncccceenee. 71
guide

how to use......ccoooiiiiiie 3
H
-help compiler option..................... 64
help on compiler options............... 35
hexadecimal conversions............ 240
Hollerith data representation....... 122
I
1/O

logical unit............ooevvieiennnennn. 137

preconnected files 151

record I/O statement specifiers 158
-i_dynamic compiler option 62

i386 preprocessor symbol............. 25

ia64 preprocessor symbol 25
ias assembler ..o 6,7
1S file .. 238
IBM keywordcccceevveeiiiiiiennnns 123
icrt.internal.map file 228
icrt.link file ..., 228
idb debugger

See debuggingcccoeeveeeiiiinnnns 88
IEEE* S_floating format............... 123
IEEE* T _floating format............... 123
IEEE* X_floating format............... 123
IfC il . 237
ifc.cfg file ..o 237
ifcore_msg.catfilecccceeeeee. 228

ifort command

examples ofcccceeveiiiiiiiiiiiiinn, 16
SYNIAX cevviiiiiiiieeiiie e 14
using multiple..........ccooeeeeeeeeee 35
ifort file......uveeeiiiiiiiiiiiiee 237, 238
10] ¢ B ox {0 RS 13
ifort.cfg file.................... 21, 237, 238
ifortbin file........ccoooevviivniinness 237, 238

IFORTCFG environment variable.13,
21, 234

277

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building

Applications

ifortvars.cshcccoovvvvveeiiiiiinnn 13
ifortvars.csh file............. 14, 237, 238
ifortvars.shccooociiiiiii 13
ifortvars.sh file............... 14, 237, 238
ifportlib.a library..........ccccvvnnnnnnn. 229
-implicitnone compiler option 64
implied OPENc......... 147, 149

include files

searching for.........cccoeevvieiiiinnnnn, 20
indirect command files

See response files..................... 21
information retrieval routines....... 230

-inline_debug_info compiler option 64

input and output routines 230
INPUL fIleS....uviiiiiiiiieeeeeeeeeeeeee 9
input record transfer.................... 162
INQUIRE statement............ 138, 155
inquiry by file name..................... 155
inquiry by output item list 155
inquiry by unit.............ccccnnnn. 155
installing

shared libraries............cccccccnnene 30
INTEGER compiler directive......... 36

278

integer data representation

INTEGER(KIND=1).........cccee.... 112
INTEGER(KIND=2).........cccce.... 113
INTEGER(KIND=4).........cccce.... 113
INTEGER(KIND=8).................. 113
OVEIVIEW ..oooeiiiiiiiiiiiieieeeeeeee 112
integer pointerccccvveeeee. 99, 203

INTEGER(IKIND=8) data
representation.............cccccceeennne 113

INTEGER(KIND=1) data
representation...........ccccoeeeeennn. 112

INTEGER(KIND=2) data
representation...........cccceeeeeeennn. 113

INTEGER(KIND=4) data

representation...........cccceeeeeeennn. 113
-integer_size compiler option 47
INTERFACE........coieiieeee, 202
INTERFACE statement................ 190
internal filesvvvvviiiiiiiiieennnn. 143
intrinsic data types....................... 110
IOSTAT specifier......cccceeeevvvennnnns 222
-ip compiler optioNccoeeeeeeeeeennnnns 71

-ip_no_inlining compiler option...... 71
-ip_no_pinlining compiler option....71

-IPF_flt_eval_methodO compiler
OPLION ..o 55

-IPF_fltacc compiler option 55
-IPF_fma compiler option.............. 55

-IPF_fp_speculation compiler option

.. 55
-ipo compiler optioNn........cccceeeeeee... 71
-ipo_c compiler option................... 71
-ipo_obj compiler option................ 71
-ipo_S compiler option 71
ISNAN intrinsic function 119
-ivdep_parallel compiler option 71
K
key files

[A-32. e 237

ltanium®-based....................... 238
L
-L compiler optioncccoeeeeeeennn. 62
language options...........cccceeeeeennnn. 60
Id

Seelinker ... 7
Id 6
LD_LIBRARY_PATH environment

variable...................... 30, 233, 234
legal information................ceeveveeennee. 1
libcprts.afile......ccoooviiiiiininn. 228

libcprts.sofileoovvveiiiiceennnen. 228
libcprts.so.5fileooovviineennnn. 228
libcxa.afile ..o 228
libcxa.so file.........ooevvviiiiiiiiiiiinee, 228
libcxa.so.5file........ueeeiiiiiiiiiieeee, 228
libcxaguard.afileccccceveeeeeee. 228
libcxaguard.so fileoeeeeeeee. 228
libcxaguard.so.5 file........cc.......... 228
libguide.afilecccccvvriiviicennnnn. 228
libguide.sofilecccccvvveeennnen. 228
libguide_stats.afile...................... 228
libguide_stats.so file.................... 228
libifcore.afilecccovvvivviiieennnnnn. 228
libifcore.so fileovvivviiiiieennnnn. 228
libifcore.so.5fileoovvivviiieennnnn. 228
libifcoremt.afilecccccceeeenns 228
libifcoremt.so fileccccceeernne 228
libifcoremt.so.5file....................... 228
libifport.afile........cccoovviiiincinnnnnn. 228

libifport.a library

USING oo 229
libifport.so fileoevvvvviiveennnnn. 228
libifport.so.5file ..., 228

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building

Applications
libimf.a file.......cccoovviiiiiiiiieene 228
libimf.a library...........cccovvvvvvvnnnnnnn. 233
libimf.sofile ..., 228
libirc.afile......cccccooniiiiiiiiins 228
libircmt.afile......ccoooovviin. 228
libm.alibraryccccooviviiiinnnnnnn. 233
libompstub.afile........cccccovveeneen. 228
libraries

creating shared..............cccceeeee 30

using

OVEIVIEW ...coeviiiiiiiiieeeeeeenns 227

librariesccooov 228
libraries options.............cccceeeieeeeennn. 62
libsvml.afilecccovvvvviiiiiiiinnnnn. 228
libunwind.afilecccccevveeeennnnn. 228
libunwind.so file..........cccccoeeeins 228
libunwind.so.5file....................... 228
limitations

numeric conversion 126
limits

(o0] 10] o1 (=] (T 238
NKET .o 7

linker library

280

SPECITYING...ccovveeeiiiiiie e, 16
linking

C/Fortran mixed-language

Programs.........cccceeeeevnneeennnnns 213

preventing........ccccvvvevvvieeeeeeeenn, 16
linux preprocessor symbol............. 25
list-directed I/O statement 139
little endian storage 123
LITTLE_ENDIAN keyword........... 123
location

message catalog file................ 217
logical data representation 114

logical data types

handlingcccoovvvviieene, 200
logical /O units...........ouvviiiiiennnn. 137
-logo compiler option..................... 64
M
macro

See preprocessor symbol.......... 25

make command

USING covvieiiieee e e eeeeeeeeiee e e 14
makefile..........ccooviiiiiiiinn 14, 17
manuals

additionalccccveeiiiiiiiiiieeee, 3

Map fileooeeeeeeee 86
math librariesccccccvvvvevveeennnn. 233
message catalog file location...... 217

methods of specifying the data
format

OVEIVIEW ... 127
Microsoft* compatibility 174
Microsoft* Fortran PowerStation

compatibility...........cceeeeiinnnnnnn. 174
miscellaneous options................... 64

-mixed_str_len_arg compiler option
.................................. 54, 183, 209

mixed-language programming
accessing dataccccceeeeeeennn. 191

adjusting calling conventions
OVEIVIEWcovveeeeeiiiieeeeeeeena, 182

adjusting naming conventions
OVEIVIEWcovviieeeiiiiiieeeeeene, 186

ATTRIBUTES properties......... 183
C/C++ naming conventions...... 187
calling conventions.................. 183

calling subprograms from the main

Programccceeeeveineiinnnens 180
complex data types 200
exchanging data..................... 191
handling data typesin 198

logical data types..................... 200
numeric data types 200
OVEIVIEW ... 179
passing arguments in............... 192
procedure names..................... 188
reconciling case of names....... 189
summary of issues................... 180

using common external data....194
using modules iN........ccccceee.... 214

mixed-language programs

debugging.......ccccceeeeeiiiieeiieenn, 107
module
compiling programs with............. 17

using in mixed-language
programmingccceeeeeeennen. 214

module (.mod) files

multi-directorycccceeennnnnnne 17
searching for........cccoeevveeeeiiiennnn, 20
USING covvieiiieee e e eeeeeeeeiee e e 17
-module compiler option................. 82
module variable....................c.o.. 99
-mpl compiler option..................... 55
multi-byte characters....................... 8

multiple files

281

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building

Applications

compiling and linking 16
N
name case

reconcilingcccoevvvvvvvcennennn. 189
namelist /O statement................ 139
-names compiler option................. 54

naming convention

adjusting in mixed-language
programming..........cccceeeee.... 186

naming conventions

ClCH+ i 187
C/Fortran mixed-language
Programscccoeeeevueeeennnens 216
NATIVE keyword...............coeee... 123
-nbs compiler option...................... 38

NLSPATH environment variable 217,
234

-no_cpprt compiler option 62
-noauto compiler option a7
-noautomatic compiler option........ 47
-nobss_init compiler option 64

NODECLARE compiler directive... 36
-nodefaultlibs compiler option 62
-nofor_main optioncccccueeeee 64

NOFREEFORM compiler directive 36
282

-noinclude compiler option 64
-nolib_inline compiler option.......... 71

-nomixed_str_len_arg compiler

OpLtioNvvviieeiii, 54, 183, 209
nonadvancing /O 161
nonadvancing record 1/O............. 161

nonnative data

(101 1] o o F T 136
-nosave compiler option a7
-nostartfiles compiler option 64
-nostdinc compiler option 64
-nostdlib complier option 62

NOSTRICT compiler directive....... 36
notation conventions 3
-Nso assembler option 7
numeric conversion

limitations of............cccceeeeveeennn. 126
numeric data types

handlingcccovvvvviiicieneee, 200
numeric formats

NAtIVE ..o 123

NONNALIVEccoevieeeeiiiiiiee e 123

numeric values and conversion
FOULINGS ..oeeeeeeeee e, 230

-nus compiler option............cccec..... 54
O
-O compiler option................... 71, 82

obtaining file information

See INQUIRE statement 155
octal conversions..........ccccceeeenee 240
-onetrip compiler option 38
OPEN

implied.........cccoooiiiiiis 147

OPEN statement

and file sharing........................ 160
DEFAULTFILE specifier.......... 149
FILE specifiercccoovvvvvvnnnnnn. 149
for preconnected files.............. 151
FORM specifier 139, 147

ORGANIZATION specifier....... 142

POSITION specifier................. 160
RECL specifier 146, 147
SPECIfiers ..., 152
STATUS specifier.................... 143
supplying a file name............... 147
USEROPEN specifier.............. 164
OPEN statement................. 138, 147

Index

OPEN statement CONVERT method

... 133
opening

file 158

fIlES . 152
opening files.......ccccoviiieennn 152
-openmp compiler option............... 60

-openmp_report compiler option ...42

-openmp_stubs compiler option60

operators
Fortran ..., 106
opt/intel_fc_80/bin directory 13

opt/intel_fc_80/bin/ifortvars.csh file14
opt/intel_fc_80/bin/ifortvars.sh file .14
-opt_report compiler option 71
-opt_report_file compiler option.....71
-opt_report_help compiler option...71
-opt_report_level compiler option..71
-opt_report_phase compiler option 71

-opt_report_routine compiler option

... 71
optimization options....................... 71
OPTIONS statement 35

OPTIONS statement method 134

283

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building

Applications

ORGANIZATION specifier

in OPEN statement.................. 142
output
redirectingccoevvvvicieeeeeeenn, 27

output file

FENAMING .evvneieee e 16
output file ... 10
output files optioNScccccuvnnnnee 82

output item list

INQUIry bycoooeeeeiie 155
output record transfer.................. 162
overriding

default run-time library exception

handler.........cccos 226
overriding options..........cccceeveeeeenne. 35
overview

building applications.................. 12
compiler optionscccceunnnee 34

converting unformatted data.... 123

data representation 109
debuggingcccccceeiiiiieeeeiee 88
error handlingcccceeeiieeeeenn. 216

files and file characteristics 141

Fortran /O ..o, 136
284

getting started............coeeeeeevveennnns 4

handling data types in mixed-
language programming........ 198

integer data representations....112

methods of specifying the data
format.......ceeeeeeveiiiiiiiiiiiieenn, 127

mixed-language programming
adjusting calling conventions 182

adjusting naming conventions
... 186

mixed-language programming.179

native IEEE* floating-point
representation 115

of Fortran/C mixed-language

Programs........ccceeeeevvnnerennnnnns 213
portability library....................... 229
record operations..................... 157
using librariesccccoeeeeeeen 227

P

-p optimization compiler option...... 71

-p32 assembler option..................... 7
PACK compiler directive................ 36
-pad compiler option...................... 64
-pad_source compiler option......... 60
-par_report compiler option 42

-par_threshold compiler option...... 71

-parallel compiler option................ 71
parallelizercccovvvviiiiiieineeeen, 5
passing arguments

between Fortranand C............ 216

in mixed-language programming

... 192
PATH environment variable......... 234
pathname

absolute..........coooiiiii, 10
default

rules for applying 149

relative........ccceeveeeeeeeiiiiiieeeen 10
-pc compiler option.........cccceeeeeeee. 55
-pg compiler optionccee... 47
phases

compilationcoooeeiiiiiiis 6

PrepProCEeSScovvvviiviriiiirniiiiees 7
011 0= 2 147
pointer

passing in mixed-language

programming........ccccceeeeeenn.. 203

receiving in mixed-language

programming........ccccceeeeeenn.. 203
pointer variable 99

portability library

OVEIVIEW ..o 229
USING covvviiieeeee e 229
portability libraryc............ 230
portability routines 230
porting nonnative data................. 136

POSITION specifier

in OPEN statement.................. 160
PowerStation* compatibility.......... 174
-prec_div compiler option 64

preconnected file

preconnected files 147, 151

predefined preprocessor symbol...25

-prefetch compiler option............... 71
preprocess phase..........ccccceeeeeeeenn. 7
preprocessor symbol.................... 25
preventing linkingc............ 16

PRINT statement. 138, 139, 147, 158
procedure

Prototypingccoevvvvvveiinnneeennn. 190
procedure names

in mixed-language programming
... 188

procedures

285

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building

Applications

user-supplied OPEN................ 164
process control routines.............. 230
processor dispatch...........cccceeeeeenn.. 5
-prof_dir compiler option 71
-prof_file compiler option............... 71

-prof_format_32 compiler option ... 38

-prof_gen compiler option 71
-prof_use compiler option 71
profdcg filecccoeevveeeiiiiiiiiin, 238
profile-guided optimization.............. 5
profmerge file...................... 237, 238
proforder file.............cc........ 237,238
program

creating, running, and debugging

... 27
prototyping a procedure............... 190
Q
-Qinstall compiler option 82

-Qlocation compiler option 23, 82

-Qoption compiler option......... 23, 82
R
-r compiler optionccccceennnnne a7

RANDOM_NUMBER intrinsic
subroutineccoeeeiiiiiinnnn. 230

286

RANDOM_SEED intrinsic subroutine

... 230
-rcd compiler option............ccccueeeee 64
READ statement

ADVANCE specifier................. 161

READ statement .138, 139, 147, 158

READONLY specifier

in OPEN statement.................. 160
REAL compiler directive................ 36
REAL data representation........... 116
REAL(KIND=16) data representation

... 117
REAL(KIND=4) data representation

... 116
REAL(KIND=8) data representation

... 116
-real_size compiler option a7
RECL specifier

in OPEN statement.......... 146, 147
RECL value.........ccvvvvvvveeiiiiieennnnn, 142
reconciling

case of namesccccoeee. 189
record aCCessS.........uvvvveveeeeeeeeeenn. 158

record characteristics

OPEN statement specifiers for 152

record /O
advancing........cccccciieiieeeeenn, 161
nonadvancing.............ccceeee..... 161

record /O ... 161

record 1/O statement specifiers ... 158
record length..........coeevvviiiiiienennn. 147
record locking.........ccccvveevieiennnnn. 160
record operations

OVEIVIEW ...t 157
record overhead............cccccceernne 146

record position

changing........cccvvvvviiiiciinneeeenn. 160
specifying initial 160
record SiZeeevveveveeeeeeeeeieeneeen. 162
record transfer.........ccccccvveeeeeeenn. 162

record transfer characteristics

OPEN statement specifiers for 152
record type

ChoOSING ..o 144
record type.......eeeevveeeeinnnns 144, 158
record types

format........ccooeiiiii s 170

record typesoeeeeevvvveevvvnnnnnennn. 170

record variablecccevvvvvieeennnn. 99
-recursive compiler option 37
redirecting

command-line output 27
-reentrancy compiler option........... 37
REFERENCE property................ 183
relative file organization............... 142
relative pathname...........ccccoooeee.. 10
renaming an output file.................. 16
representation routines................ 230
response files.......cccovvviiiieeneneen, 21
restrictions

in creating shared libraries......... 30
returning

character data types................ 209
REWIND statement............. 138, 158

REWRITE statement... 138, 139, 158

rules

for default file names 149

for default pathnames.............. 149
run-time

environment variables.............. 234
run-time checking.......................... 86

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building

Applications
run-time error messages
St Of oo 242
run-time errors
handling...........cccoevvviiieeenn, 222
Run-Time Library (RTL)
and idb ..., 108

Run-Time Library (RTL) default error
ProCesSINgccceevvveeverivnnineennn 217

Run-Time Library (RTL) default

exception handler.................... 226
run-time optionscceeeeeieeeeennn. 86
S
-S compiler optioncccoeeeeeeenee. 82
=S OPLON .o 7
-safe_cray_ptr compiler option...... 47
-save compiler option.................... a7
-scalar_rep compiler option........... 71
scratch fileS.......cccoviiiiiiinns 143
searching

for include files 20

for module (.mod) files............... 20
segmented record type 144, 146
segmented records 170

sequential access

288

for recordscccccvvieiiieinnnns 158
sequential file organization.......... 142
setenv command...........cccceeeeeennnne 13
setting

breakpoints........cccccvviiiennnnnn. 91
-shared compiler option................. 62

shared libraries

creating.....ccceeeeeeieeeeeeeee 30
installing........ccoovvveeiiiiiiiee e, 30
reStrictionsccceeevviniiivienenenn. 30
shared-file checking 160
-shared-libcxa compiler option 62

shell script
FUNNING. . 14

sigaction routine

(o= 111 o Vo S 224
signal

debugging a program............... 108

description ofccccooeeeiiiinnn. 224
signal handInigccccoeeeeneen. 224

signal routine
calling ... 224

size

of executable programs........... 238
-size_Ip64 compiler option 64
SOCKEL ... 147
-sox compiler option..............cec..... 37

special file open routine

OPEN statement specifier for.. 152

specifications
file . 10
specifying
data format........ccccceeeeviiiinnnnn. 127
file name.........cccoeieiii 149

SQUARES example program 95

-stand compiler option................... 42
-stand90 compiler option............... 42
-stand95 compiler option............... 42
statement

INTERFACE......ccccoi s 190
-static compiler option................... 62
-static-libcxa compiler option......... 62

STATUS specifier

in OPEN statement.................. 143
-std compiler option.............ccc.eeeee. 42
-std90 comnpiler option................. 42

-std95 compiler option................... 42
storage
big endian.............cccccieeee. 123
little endiancccccceiinnnnns 123
stream file.........ccoooiiiiiis 170
stream record type 144, 146
Stream_CRrecord 170

Stream_CR record type....... 144, 146
Stream_LF recordccccoeeeen. 170
Stream_LF record type........ 144, 146
Streaming SIMD Extensions (SSE).5

Streaming SIMD Extensions 2

(SSE2) ..o 5
STRICT compiler directive 36
subprograms

calling from the main program .180

summary
of mixed-language issues........ 180
symbol
predefined preprocessor............ 25
symbol table information 89
-syntax compiler option 64
-syntax_only compiler option......... 64

289

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building

Applications

system, drive, or directory control
and inquiry routines................. 230

T
-T compiler optioncccccvnnnnnee 64

TBK_ENABLE_VERBOSE_STACK _
TRACE environment variable.. 234

TBK_FULL _SRC _FILE SPEC
environment variable................ 234

TEMP environment variable.. 11, 234
-Tf compiler optionccccueeeee 64
-threads compiler option 62
TMP environment variable 11, 234

TMPDIR environment variable..... 11,
234

tool

([oTo= 11T0] o 23
tools

passing options t0uun.... 23
-tpp compiler option 71
-traceback compiler option............ 86

traceback information

obtaining.........cccvvvvvviieiineeee 227
traceback information.................... 89
TRACEBACKQQ routine 227
tSelect ..o 237

290

tselectfileccooevvveveeeeinin, 237, 238

TYPE statement.. 138, 139, 147, 158

types
I/O statementsccccceeeernnnns 138
user-defined...........ccccceunnnnnnnns 212
U
-u compiler option.............ccceeeeeenns 64

unaligned data

locatingcccoeummiiiiiiiiiiiiiiie 108
unformatted data

order of precedence................. 127
unformatted direct files

and Microsoft Fortran
PowerSation* compatibility...174

unformatted 1/O statement........... 139
unformatted sequential files

and Microsoft Fortran
PowerSation* compatibility...174

Unicode*
charactersin..........cccccceiiinnn. 8
uninstall.sh ..., 237
uninstall.sh file..................... 237, 238
unit
iNqQuUiry by ... 155

unit information

OPEN statement specifiers for 152

unix preprocessor symbol............. 25
UNLOCK statement.................... 138
unlocking afile..........ccccvvvennnnn. 138
-unroll compiler option................... 71
unset commandceeeeeeveeennnn. 13
unsetenv command..............c.eee... 13
USE IFPORT statement.............. 229
-use_asm compiler option............. 82

user-defined types

handling...........cccevviiiiiin. 212
USEROPEN routine................... 147
USEROPEN specifier

in OPEN statement.................. 164
user's guide

hOW tO USEovvieeiiiiiiiiieeeeee 3

user-supplied OPEN procedures 164

using

usSer's guideoooeeveevveeeeeeeennnnnnnn. 3
\%
-v.compiler option.........cccceeeeeeeeennnn. 64
VALUE property.........ccccceveinieeens 183

Index

variable-length record type..144, 146

variable-length records................ 170
variables

displaying in debugger............... 99
VARYING property.............. 183, 189
VAXD keywordcccoeeeeeeennnn. 123
VAXG keyword...........ccceeeeeeeennn. 123
-vec_report compiler option........... 42

versions of the compiler

differences between................. 240
-vms compiler option...................... 38
W
-w90 compiler option...................... 42
-w95 compiler option...................... 42
-warn compiler option.................... 42
-what compiler option 64
-WI compiler option..............cccee.. 64

WRITE statement
ADVANCE specifier................. 161

WRITE statement 138, 139, 147, 158

X
-x compiler option.................... 64, 71
xiar file.......oooeeeiiiiie 237, 238

201

Intel® Fortran Compiler for Linux* Systems User's Guide Volume I: Building
Applications

Xild file ..., 237, 238 z
-Xlinker option ... 64 -zero compiler option..................... a7
Y -Zp compiler option...........cccevveeenns a7

-y compiler option...........c..............

292

